B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

DDD43

December, 2016

BIEL-016: MICROWAVE AND RADAR ENGINEERING

Time: 3 hours Maximum Marks: 70

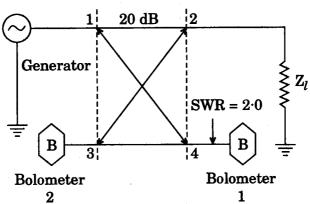
Note: Attempt any seven questions. Assume suitable missing data, if any. Question no. 1 is compulsory. Use of scientific calculator is allowed.

- 1. (a) What is the dominant mode of operation in a waveguide? Explain with an example.
 - (b) Plot and briefly explain the graph between coupling coefficient and standing wave ratio.
 - (c) How can the characteristic impedance and propagation constant of a transmission line be measured?
 - (d) Differentiate between CW and Pulse Radar.
 - (e) Briefly explain the Doppler effect in Radar operation. $5\times 2=10$
- 2. (a) Solve the Helmholtz equation for a rectangular coordinate system considering different cases. Find the solution when the waveguide operates in TM_{mn} mode.
 - (b) What is circular waveguide? Explain.

5 5 3. (a) Explain the principle of microwave resonator and find out the frequency in case of a semi-circular cavity resonator.

5

(b) Explain about the waveguide corners, bends and twists and their usage in a transmission line.


5

4. (a) Explain the basic principle of a two-hole directional coupler along with its S-matrix.

5

(b) A symmetric directional coupler with infinite directivity and a forward attenuation of 20 dB is used to monitor the power delivered to a load Z_l . Bolometer 1 introduces a VSWR of $2\cdot0$ on arm 4; bolometer 2 is matched to arm 3. If bolometer 1 reads 8 mW and bolometer 2 reads 2 mW, find (a) the amount of power dissipated in the load Z_l , and (b) the VSWR on arm 2.

5

5.	(a)	Explain two-cavity klystron amplifier with necessary block diagram and write down the equation of velocity modulation.	5
	(b)	Explain the basic principle of a Tunnel diode with $V-I$ characteristic.	5
6.	(a)	Explain the operation of a TRAPATT diode by drawing its structure.	7
	(b)	Calculate the avalanche zone velocity of a TRAPATT diode having the following parameters:	3
		Doping Concentration : $2 \times 10^{15} \text{ cm}^{-3}$ Current Density : 20 kA/cm^2	
7.	(a)	Explain the operation of Pulse Radar with necessary block diagram. Mention how a Delay line canceller can act as a filter.	5
	(b)	Discuss the operation of Frequency Modulated CW Radar by drawing its block diagram.	5
8.	pow	lain the operation of MT Radar having er-amplifier transmitter with block tram.	10

- **9.** Write short notes on any two of the following: $2\times 5=10$
 - (a) Microwave Isolator
 - (b) PIN Diode
 - (c) Radar Displays
 - (d) Tracking Radar