B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination
December, 2016

BIEL-003 : DIGITAL ELECTRONICS

Time: 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Assume any missing data suitably. Use of scientific calculator is allowed.

1. (a) For a given number $(1437)_{10}$, obtain its equivalent excess-3 code and gray code. 5
(b) Simplify the given Boolean expression using

$$
\begin{aligned}
& \text { Boolean algebra: } \\
& \qquad F=\bar{A} \bar{B} C D+\bar{A} B C D+A B \bar{C} D+A B C \bar{D}
\end{aligned}
$$

2. (a) Design and implement a full adder using $\begin{aligned} & \text { multiplexer. }\end{aligned}$
(b) Design a 3-bit priority encoder. 5
3. (a) Define the following terms: 5
(i) Excitation Table
(ii) State Table
(b) Design a Mod-7 ripple up-counter. 5
4. (a) Simplify $F=\Sigma m(1,3,7,10,13)+d(0,2,4)$ using K-map.
(b) Design and implement D flip-flop using
JK flip-flop.
5. (a) Draw and explain the working of a TTL NAND gate.
(b) Explain, how MOSFET acts as a switch. 5
6. (a) Differentiate between static and dynamic RAM.
(b) Draw and explain the working of a static RAM cell.
7. (a) Differentiate between ROM, PLA and PAL. 5
(b) Implement $y=5 x+3$ using multiplexer, where x is a 3-bit number.5
8. Simplify $F=\Sigma(0,3,5,7,13,14,15)$ using K-map
and implement the simplified expression using
Universal gates. 10
9. (a) Design a 4-bit binary-to-gray code
converter using PROM. 5
(b) Write notes on the following : 5
(i) FLASH Memory
(ii) EPROM
10. Design a Mod-8 synchronous up/down counter using JK flip-flop.
