No. of Printed Pages: 3

BICS-010

B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

00363

Term-End Examination

December, 2016

BICS-010 : FORMAL LANGUAGES AND AUTOMATA

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks.

- 1. (a) Explain the terms : regular sets, regular expressions and closure properties.
 - (b) Let $R = \{(1, 2), (2, 2), (2, 3)\}$ be a relation on the set 1, 2, 3. Find R^* .
- 2. (a) Construct a finite automaton to accept the regular expression

$$(0+1)^*(00+11)(0+11)^*$$
. 5

(b) Construct FA equivalence to the following regular expression:

$$r = 01[((10)* + 111)* + 0]* 1$$

5

5

5

.	(a)	$r = (a + b)^*$ abb and optimize the states.	5
	(b)	Construct NFA for the following regular expression: $0+10^*+01^*0$	5
4.	(a)	What is Chomsky normal form? Convert the following context-free grammar to Chomsky normal form: $S \to AaB \mid aaB$ $A \to \epsilon$ $B \to bbA \mid \epsilon$	5
	(b)	Convert the following grammar into CNF : $S \rightarrow aAD$ $A \rightarrow aB \mid bAB$ $B \rightarrow b$ $D \rightarrow d$	5
5.	(a)	Define push down automata and explain its model with the help of a neat diagram.	5
	(b)	Prove that if L is $L(M_2)$ for some PDA M_2 , then L is $N(M_1)$ for some PDA M_1 .	5
6.	(a)	State and explain CYK algorithm using some examples.	5
	(b)	List the problems that are decidable for deterministic CFLs.	5

7.	(a)	Explain the terms turing machine and Recursively enumerable language.	5
	(b)	Explain the procedure involved in the design of a turing machine.	5
8.	(a)	Write a short note on universal turing machine.	5
	(b)	Explain in detail: Church's thesis.	5
9.	_	ain Chomsky hierarchy of languages with elp of a neat diagram.	10
10.	(a)	Show that $L = \{a^nb^nc^n : n > = 1\}$ is a context sensitive language.	5
	(b)	Discuss briefly about undecidability of the Post correspondence problem.	5