No. of Printed Pages : 4

ET-540(B)(S)

B.Tech. Civil (Construction Management)

Term-End Examination

00428

December, 2016

ET-540(B)(S) : FLOW IN OPEN CHANNEL

Time : 3 hours

Maximum Marks : 70

- **Note :** Answer any **five** questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume suitable data, if not given.
- (a) Define Reynolds number and Froude number. How do these numbers help in the classification of flow through pipes/open channels ?
 - (b) Differentiate between the following : $2 \times 3=6$
 - (i) Hydraulic gradient and Energy head
 - (ii) Gradually varied flow and Rapidly varied flow

ET-540(B)(S)

P.T.O.

- **2.** (a) Draw the isovels for the following channel sections : $3 \times 2=6$
 - (i) Triangular channel
 - (ii) Narrow rectangular channel
 - (iii) Natural irregular channel
 - (b) Determine the normal discharge through a trapezoidal channel for the following data :

Normal depth of flow = 2 m

Bottom width of channel section = 3 m

side slope = 1.5:1

8

7

7

Longitudinal slope = 0.0016n = 0.013

- (a) Draw a typical specific energy curve for open channel flow and explain its salient features.
 - (b) A 2.5 m wide rectangular channel has a specific energy of 1.5 m when carrying a discharge of 6.5 m³/s. Determine the alternate depths and corresponding Froude numbers.

 (a) Prove that, in a horizontal rectangular channel, energy loss (E_L) in a hydraulic jump is

$$\mathbf{E_L} = \frac{(\mathbf{y}_2 - \mathbf{y}_1)^3}{4\mathbf{y}_1\mathbf{y}_2}.$$

- (b) A hydraulic jump occurs in a rectangular channel of 3.0 m width having a discharge of 7.8 m³/s. The depth of flow before the jump is 0.28 m. Determine (i) the sequent depth, and (ii) the energy loss in the jump.
- 5. (a) Discuss the assumptions made in the theory of gradually varied flow.
 - (b) A rectangular channel 4.0 m wide having a bed slope of 9×10^{-5} carries water at a depth of 1.3 m. If the channel terminates in an abrupt drop in the bed, what type of flow profile, upstream of drop, is expected to form ? Assume n = 0.016.

ET-540(B)(S)

3

P.T.O.

7

7

7

6. In a rectangular channel, two reaches M and N are in series, with reach M being upstream of reach N. These channel reaches have the following characteristics :

Reach	Bed Width (m)	Slope	Normal Depth of Flow
М	5.0	0.0004	3.036
N	4 ·0	0.0003	2.902

The discharge in the channel is $15.0 \text{ m}^3/\text{s}$.

Identify and sketch the resulting gradually varied flow (GVF) profile due to change in channel characteristics as shown in the table above.

- 7. (a) Describe in brief, the Bakhmeteff method of computation of water surface profile.
 - (b) Discuss the graphical integration method of computation of water surface profile.

4

14