No．of Printed Pages ： 4 ET－535（A）
B．Tech．Civil（Construction Management）
Term－End Examination
ロIロッア2．December， 2016
ET－535（A）：ELEMENTARY HYDROLOGY
Time： 3 hours Maximum Marks ： 70
Note：Attempt any five questions．All questions carryequal marks．Use of scientific calculator ispermitted．Assume any data，if needed．
1．（a）Define Hydrology．Draw a block representation of a hydrologic system and explain the different hydrologic processes． 10
（b）Discuss the differential heating of Earth and its effects on the atmosphere． 4
2．（a）What do you understand by water equivalent＇of a given depth of snow ？ Explain the utility of radar and satellite in the measurement of precipitation． 7
（b）What is the usefulness of various methods of computing the average depth of rainfall over a given area？ 7
ET－535（A）1P．T．O．
3. (a) What are the various types of Evaporimeters ? Explain any one of them with a neat sketch. 10
(b) Calculate by energy balance method, the evaporation rate from an open water surface, if the net radiation is $200 \mathrm{~W} / \mathrm{m}^{2}$ and the temperature is $25^{\circ} \mathrm{C}$, assuming no sensible heat flux or ground flux.
4. (a) What are the factors affecting evapotranspiration and what are the field methods to measure actual evapotranspiration? 8
(b) Distinguish between the terms potential evapotranspiration and actual evapotranspiration. Explain the relation between the two. 6
5. (a) Bring out the difference between depression storage and surface detention. Relate the rate of depression storage to the rate of rainfall and the rate of infiltration. 7
(b) What is the importance of infiltration inhydrologic cycle ? Discuss the practicalimportance of ϕ-index.7
ET-535(A) 2
6. (a) The observed values of run-off, at a stream gauging site are given below :
Upstream of the gauging site, a weir, built across the stream, diverts 3.0 and 0.5 million $\mathrm{m}^{3}\left(\mathrm{Mm}^{3}\right)$ of water per month for use in irrigation and industry, respectively. The return flows from irrigation estimated at $0.8 \mathrm{Mm}^{3}$ per month and from the industry at $0.3 \mathrm{Mm}^{3}$ per month, join the stream at the upstream of the gauging site. Estimate the virgin flow of the river. If the catchment area is $120 \mathrm{~km}^{2}$ and the average annual rainfall is 185 cm , also determine the run-off - rainfall ratios. 10

Month	Run-off $\left(\mathrm{Mm}^{3}\right)$
1	2.0
2	1.5
3	0.8
4	0.6
5	2.0
6	8.0
7	18.0
8	22.0
9	14.0
10	9.0
11	7.0
12	3.0

ET-535(A)
3
P.T.O.
(b) What is the main difficulty in using
the slope-area method of discharge
measurement?
7. (a) What is Unit Hydrograph ? Explain about the derivation of Unit Hydrograph.7

(b) What are the direct methods of discharge
measurement in a stream channel ? 7
8. Write short notes on any four of the following : $\quad 4 \times 3 \frac{1}{2}=14$
(a) Run-off
(b) Double Mass Curve
(c) Synthetic Unit Hydrograph
(d) Recording Rain Gauges
(e) Non-recording Rain Gauges
(f) Infiltration Indices
(g) Energy Balance

