B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

पII1-2 Term-End Examination

December, 2016

ET-501(B) : FOUNDATION ENGINEERING

Time: 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Assume any missing data, if not given. Use of calculator is allowed.

1. (a) What do you understand by 'Soil
Exploration' ? Why is it necessary in Civil
Engineering projects ? Mention the
limitations of site investigations.
(b) How is a soil exploration report prepared? Explain with a typical bore log sheet.7
2. (a) Derive the equation suggested by IS-Code for the calculation of Bearing Capacity. 7
(b) How is bearing capacity influenced by the presence of water table? Explain.7
ET-501(B)
3. (a) When are combined footings preferred ? Explain.
(b) Two columns are loaded as shown in Figure 1. Determine the dimensions of combined footing to carry the column loads.
Dimensions of columns
$\mathrm{A}=45 \mathrm{~cm} \times 45 \mathrm{~cm}$
$B=50 \mathrm{~cm} \times 50 \mathrm{~cm}$

Figure 1
4. A 2 m wide strip footing is to be constructed in a sandy stratum 2 m thick. The depth of footing is 1 m below the ground level. The sand layer is underlain by 1 m thick clay stratum. The clay overlays a bed of dense sand. The water table is at the top of the clay stratum. The submerged unit weight of clay is $8 \mathrm{kN} / \mathrm{m}^{3}$ and bulk unit weight of clay is $20 \mathrm{kN} / \mathrm{m}^{3}$. The footing is expected to carry a load intensity of $230 \mathrm{kN} / \mathrm{m}^{2}$. Compute the ultimate settlement. Assume voids ratio at $44 \mathrm{kN} / \mathrm{m}^{2}=1.96$ and at $195 \mathrm{kN} / \mathrm{m}^{2}=1.01$, respectively.
Given the following data : 14

Depth	0.1 B	0.5 B	1.0 B	2.0 B
σ_{z}	0.997 q	0.817 q	0.550 q	0.306 q

ET-501(B)
5. (a) Explain the state of stress in active and passive states in the backfill behind a retaining wall.
(b) Differentiate between counterfort and buttress type of retaining walls.7
6. A six-pile cluster with 40 cm diameter with centre-to-centre spacing of 105 cm as shown in Figure 2, is driven into a deep deposit of clay. The unconfined compression strength of the clay is $90 \mathrm{kN} / \mathrm{m}^{2}$. The length of pile is 21 m . Calculate the carrying capacity. 14

Figure 2
7. Explain the following tests to determine the dynamic soil properties : $2 \times 7=14$
(a) Seismic Cone Penetration Test
(b) Block Resonance Test

ET-501(B)
3
P.T.O.

$$
\text { 8. Write short notes on the following : } \quad 4 \times 3 \frac{1}{2}=14
$$

(a) Construction Techniques in Expansive Soils
(b) Classification of Piles based on Method of Installation
(c) Allowable Bearing Pressure
(d) Reinforced Earth Walls

