B.Tech. Civil (Construction Management)/ B.Tech. Civil (Water Resources Engineering)

Term-End Examination

DO642 December, 2016

ET-302(A) : COMPUTER PROGRAMMING AND NUMERICAL ANALYSIS

Time: 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Write a program in FORTRAN to read two matrices X and Y. Both X and Y matrices are square matrices. Also make a program to check whether $X^{-1}=Y$ or not.7
(b) Given four numbers A, B, C and D. Write a program in FORTRAN to arrange the values of the four numbers in an ascending order.7
2. (a) Explain the following control constructs
with examples : 8
(i) IF
(ii) GO TO
(iii) DO
(iv) COMMON

ET-302(A)
1
P.T.O.
(b) Write a program in FORTRAN to calculate the area of a circle, the area of a triangle and the area of a rectangle.
3. (a) Using Newton-Raphson method, find out the real root of the equation $x \log _{10} x=1 \cdot 2$, correct to five decimal places.
(b) Find the root of the equation $\mathrm{xe}^{\mathrm{x}}=\cos \mathrm{x}$ using the Secant method, correct to four decimal places.
4. (a) Using Lagrange's interpolation formula, find the values of y when $x=10$, from the following table :

x	5	6	9	11
y	12	13	14	16

(b) Apply Gauss elimination method to solve the following equations:

$$
\begin{aligned}
& x+4 y-z=-5 \\
& x+y-6 z=-12 \\
& 3 x-y-z=4
\end{aligned}
$$

5. (a) Apply Crout's method to solve the following equations:
$3 x+2 y+7 z=4$
$2 x+3 y+z=5$
$3 x+4 y+z=7$
(b) Use Runge-Kutta fourth order method to find an approximate value of y when $x=0 \cdot 2$, given that $\frac{d y}{d x}=x+y ; y=1$ when $x=0$.
6. (a) Determine the eigenvalues and corresponding eigenvectors for the matrix A .

$$
A=\left[\begin{array}{rrr}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right]
$$

(b) Find the inverse of the matrix $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$ by elementary row operations. Also find out the rank of the matrix.
7. (a) From the following table, estimate the number of students who obtained marks between 40 and 45 :

Marks	No. of Students
$30-40$	31
$40-50$	42
$50-60$	51
$60-70$	35
$70-80$	31

ET-302(A)
3
P.T.O.
(b) The velocity v ($\mathrm{km} / \mathrm{minute}$) of a moped which starts from rest, is given at fixed intervals of time t (minutes) as follows :

t	v
2	10
4	18
6	25
8	29
10	32
12	20
14	11
16	5
18	2
20	0

Estimate approximately the distance covered in 20 minutes. 7
8. Explain the following: $\quad 4 \times 3 \frac{1}{2}=14$
(a) Taylor's theorem and Intermediate value theorem
(b) Global and Local variables
(c) Additional sequential file manipulation statements
(d) Graeffe's root squaring method

