No. of Printed Pages: 4

ET-204(A)

## B.Tech. Civil (Construction Management) Term-End Examination December, 2016

00982

ET-204(A): MATERIALS SCIENCE

Time: 3 hours Maximum Marks: 70

**Note:** Attempt any **seven** questions. All questions carry equal marks. Use of calculator is permitted.

- . (a) Draw and discuss TTT diagram.
  - (b) Also show the Martempering and Austempering.  $2\times 1\frac{1}{2}$
- 2. (a) What is corrosion? Explain. How does the corrosion process limit the life of the components? Explain with example.
  - (b) List down the general corrosion protectiontechniques. Discuss any one of them.

- 3. (a) A piece of copper originally 350 mm long is pulled in tension with a stress of 270 MPa. If the deformation is entirely elastic, what will be the resultant elongation? E for copper =  $11.0 \times 10^4$  MPa.
  - (b) Discuss the tensile stress strain behaviour for brittle and ductile materials, with the help of suitable diagrams.
- **4.** What is fracture? Explain the Griffith theory for the above.

Derive 
$$\sigma = \left(\frac{2 \gamma E}{\pi a}\right)^{1/2}$$
.

Here

 $\sigma = Stress$ 

 $\gamma$  = Surface energy

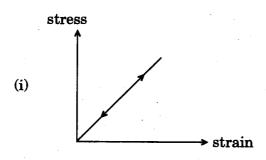
E = Modulus of elasticity

2a = Length of long axis

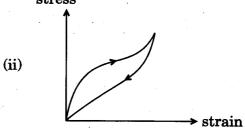
Give the assumptions also.

10

5


5

- **5.** Explain briefly all **four** of the following:  $4 \times 2 \frac{1}{2} = 10$ 
  - (a) Electron Hopping
  - (b) Ionic Conduction
  - (c) Activation Energy
  - (d) Meissner Effect


ET-204(A)

6. (a) Write down the correct condition for the following stress - strain curves:

5



stress



(b) Define the following:

5

- (i) Stress at a point
- (ii) **Body forces**
- Explain the following with the help of examples:  $2 \times 5 = 10$ 
  - Principle of X-ray Diffraction (a)
  - **(b) Neutron and Electron Diffraction**

ET-204(A)

3

P.T.O.

| 8.  | Defin                                    | e any <b>five</b> of the following :       | 5×2=10 |
|-----|------------------------------------------|--------------------------------------------|--------|
|     | (a)                                      | Van der Waals Bond                         |        |
|     | (b)                                      | Pauli Exclusion Principle                  |        |
|     | (c)                                      | Fermi Level                                |        |
|     | ( <b>d</b> )                             | Covalent Bond                              |        |
|     | (e)                                      | Energy Band Gap                            |        |
|     | ( <b>f</b> )                             | Hybrid Orbital                             |        |
| ,   | ( <b>g</b> )                             | Bragg Diffraction                          |        |
| 9.  | (a)                                      | Can the same material exist in crystalline |        |
|     |                                          | and amorphous form? Give some examp        | les.   |
|     |                                          | How many atoms of silicon are there is     | n a    |
|     |                                          | chunk of silicon weighing 0.5 kg?          | 2+3    |
|     | (b)                                      | Give the general classification of metals. | 5      |
| 10. | <b>0.</b> Define and draw the following: |                                            | 5×2=10 |
|     | (a)                                      | Point Defect                               |        |
|     | <b>(b)</b>                               | Vacancy Defect                             |        |
|     | (c)                                      | Edge Dislocation                           |        |
|     | (d)                                      | Screw Dislocation                          |        |
|     | <b>(e)</b>                               | Mixed Dislocation                          |        |