B.Tech. Civil (Construction Management) /

B.Tech. Civil (Water Resources Engineering) / BTCLEVI/BTMEVI/BTELVI/BTECVI/BTCSVI
 Term-End Examination

ロI5ヨ2 December, 2016
ET-202(A) : ENGINEERING MECHANICS

Time : 3 hours	Maximum Marks :70		
Note :Attempt any five questions. Use of scientific calculator is permitted.			

1. (a) Two equal loads of 2500 N are supported by a flexible string $A B C D$ at points B and C as shown in Figure 1. Find the tensions in the portions $A B, B C$ and $C D$ of the string.

Figure 1
ET-202(A)
1
P.T.O.
(b) A rigid prismatic weightless bar $A B$ is supported in a vertical plane by a hinge at the end A and by a horizontal string attached to the bar at D as shown in Figure 2. The end B of the bar carries a load W. Find the tension in the string and the direction of the reaction at the hinge in terms of W and θ.

Figure 2
2. (a) A boy throws a ball so that it may just clear a wall 3.6 m high. The boy is at a distance of 4.8 m from the wall. The ball was found to hit the ground at a distance of 3.6 m on the other side of the wall. Find the least velocity with which the ball can be thrown.
(b) Two adjacent guns having the same muzzle velocity of $400 \mathrm{~m} / \mathrm{s}$, fire simultaneously at angles of θ_{1} and θ_{2} for the same target situated at a range of 5000 m . Find the time difference between the two hits.
3. (a) Two blocks, A and B, placed one above the other are of weight 500 N and 1000 N respectively. They are resting on an inclined plane. Block A is attached to the bracket by a rigid rod. Determine the angle α of the plane which will make the motion of block B down the plane. The coefficient of friction for
all contact surfaces is 0.32 .

7
(b) A 6 m ladder weighing 220 N is placed against a vertical wall leaning at 30°. A man weighing 600 N reaches at point 5 m from the lowest point of the ladder. At this instant, the ladder is about to slip. If the coefficient of friction between the ladder and the wall is 0.25 , determine the coefficient of friction between the ladder and the floor.

7
4. (a) Locate the centroid of the area shown in Figure 3.

Figure 3

3
P.T.O.
(b) Calculate the moment of inertia of the channel section shown in Figure 4 about the centroidal axes.

Figure 4
5. (a) Determine the forces in the members of the truss shown in Figure 5.

Figure 5
ET-202(A)
4
(b) Draw the bending moment and shear force diagrams for the simply supported beam shown in Figure 6.

Figure 6
6. (a) The coefficient of restitution between two spheres of masses 1 kg and 5 kg is 0.75 . The sphere of mass 1 kg , moving with a velocity of $3 \mathrm{~m} / \mathrm{s}$, strikes the sphere of mass 5 kg moving in the same direction with a velocity of $60 \mathrm{~cm} / \mathrm{s}$. Find the velocities of the two spheres after the impact and also find the loss of kinetic energy during the impact.
(b) A ball of mass 20 kg moving with a velocity of $5 \mathrm{~m} / \mathrm{s}$ strikes directly another ball of mass 10 kg moving in the opposite direction with a velocity of $10 \mathrm{~m} / \mathrm{s}$. If the coefficient of restitution is equal to $5 / 6$, determine the velocity of each ball after the impact.
7. (a) A body performing simple harmonic motion has a velocity $=12 \mathrm{~m} / \mathrm{s}$ when the displacement is 50 mm and $3 \mathrm{~m} / \mathrm{s}$ when the displacement is 100 mm . The displacement is measured from the mid-point. Calculate the frequency and amplitude of the motion. What is the acceleration when the displacement is 75 mm ? 7
(b) Determine the work done by the electric motor in winding up a uniform cable which hangs from a hoisting drum, if its free length is 10 m and weight is 500 N . The drum is rotated by the motor.

