B.Tech. Civil (Construction Management)/ B.Tech. Civil (Water Resources Engineering)

GIGEㄷ

Term-End Examination

December, 2016

ET-105(B) : CHEMISTRY

Time: 3 hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any six questions from questions number 2 to 11. Use of calculator is permitted.

1. (a) Lanthanide and actinide series belong to 1
(i) s-block elements
(ii) p-block elements
(iii) d-block elements
(iv) f-block elements
(b) As atomic number increases 1
(i) energy level of the orbitals decreases
(ii) energy level of the orbitals increases
(iii) energy level of the orbitals remains constant
(iv) energy level of the orbitals first increases then decreases
ET-105(B) 1 P.T.O.
(c) Select the element having lower ionization energy from each of the pairs given below :
(i) ${ }_{3} \mathrm{Li}$ and ${ }_{9} \mathrm{~F}$
(ii) ${ }_{7} \mathrm{~N}$ and ${ }_{8} \mathrm{O}$
(iii) ${ }_{9} \mathrm{~F}$ and ${ }_{53} \mathrm{I}$
(d) Electrolysis of aqueous NaCl solution will produce
(i) $\mathrm{H}_{2}(\mathrm{~g})$
(ii) $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$
(iii) $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{Cl}_{2}(\mathrm{~g})$ and NaOH
(iv) Na (s) and Cl_{2} (g)
(e) Write the enol form of 1,3-Diketone.
(f) Write one contribution each of the following scientists :
(i) Becquerel
(ii) J. Chadwick
(iii) Aston
(g) Name the process associated with each of the following :
(i) Parkes' process
(ii) Ostwald process
(iii) Solvay process
(h) Give one important use for each of the following compounds :
(i) $\quad \mathrm{CCl}_{2} \mathrm{~F}_{2}$
(ii) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~Pb}$
(iii) $\mathrm{CH}_{2}=\mathrm{CHCN}$
(i) In +ve electromeric effect, if an electron is added to the following compound, then in which direction will π electron transfer take place $-\mathrm{C}_{3}$ to C_{2} or C_{2} to C_{3} ? Justify. 3 $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(j) Teflon, polystyrene and neoprene, all are 1
(i) Copolymers
(ii) Condensation polymers
(iii) Homopolymers
(iv) Monomers
2. Calculate the density ratio for BCC to FCC unit cell of iron. ($\mathrm{a}_{\mathrm{BCC}}$ is the lattice constant of BCC unit cell and $\mathrm{a}_{\text {FCC }}$ is the lattice constant of FCC unit cell)
3. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution is added into an acidic solution of FeSO_{4}.
(a) Write the balance equation for the reaction.
(b) Which one is the oxidising agent and which one is the reducing agent?
(c) What is the oxidation number of chromium before and after the reaction?
(d) What is the change in oxidation number of iron? $4+2+1+1=8$
4. (a) Which ore is called the fool's gold ?
(b) How is pig iron obtained in a blast furnace?

Give the chemical reactions occurring in a blast furnace when hematite, limestone and coke are charged in the blast furnace and air or oxygen is blown from the bottom. $\quad 2+6=8$
5. Answer the following :
(a) When is a ligand termed as a chelating ligand? Give one example.
(b) Which one $-\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}$ or $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ will be more stable and why ? ('en' stands for diethylene triamine)
(c) Which one $-\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}$ or $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is a monodentate ligand?
(d) Ligand is a Lewis \qquad .
6. Name the following coordination compounds according to IUPAC nomenclature : $2+2+2+2=8$
(a) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]$
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$.
(c) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
(d) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{-}$
7. How will you convert $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$ into any of the two compounds given below? Also give the names of the reagents and conditions used and steps involved in each case.
$4+4=8$
(a) $\mathrm{C}_{4} \mathrm{H}_{10}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
(c) $\mathrm{C}_{2} \mathrm{H}_{6}$
(d) $\mathrm{C}_{2} \mathrm{H}_{2}$
8. Answer the following :
$6+2=8$
(a) How many isomers are possible for $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$? Draw all the structures.
(b) A compound with molecular formula $\mathrm{C}_{7} \mathrm{H}_{16}$ shows optical isomerism, the compound will be
(i) 2,3-Dimethyl pentane
(ii) 2,2-Dimethyl pentane
(iii) 2-Methyl hexane
9. A mixture with the mole ratio of H_{2} an $/ \mathrm{O}_{2}$ as 2: 1 is used to prepare water by the ollowing reaction :

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The total pressure in the container is 0.8 atm at $20^{\circ} \mathrm{C}$ before the reaction. The temperature is raised to $120^{\circ} \mathrm{C}$ and allowed to attain equilibrium. Determine the final pressure at $120^{\circ} \mathrm{C}$ after the reaction, assuming 80% yield of water.
(Hint : Use Gay-Lussac law to determine the
initial pressure at $120^{\circ} \mathrm{C}$)
10. (a) What will be the nature of slope, ($\mathrm{dP} / \mathrm{dV}$), for a plot between P and V when 1 mole of an ideal gas is expanded?
(i) Isothermally ($\mathrm{PV}=$ const.)
(ii) Adiabatically $\left(\mathrm{PV}^{\gamma}=\right.$ const. $),(\gamma>1)$
(b) What will be the relation between T and V for an ideal gas under adiabatic condition? (Given : $\Delta \mathrm{E}=\overline{\mathrm{C}}_{\mathrm{V}} \mathrm{dT}$)
11. (a) Under what condition will the work be a state function?
(b) The standard heat of formation of $\mathrm{CH}_{4}(\mathrm{~g})$, $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are $-76 \cdot 2,-394.8$ and $-241.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Calculate the amount of heat evolved by burning $1 \mathrm{~m}^{3}$ of CH_{4} measured under standard condition. $2+6=8$

