No. of Printed Pages: 7

ET-105(B)

B.Tech. Civil (Construction Management)/ B.Tech. Civil (Water Resources Engineering)

Term-End Examination

December, 2016

00650

ET-105(B) : CHEMISTRY

Time : 3 hours

Maximum Marks : 70

1

1

Note: Question no. 1 is compulsory. Attempt any six questions from questions number 2 to 11. Use of calculator is permitted.

1. (a) Lanthanide and actinide series belong to

- (i) s-block elements
- (ii) p-block elements
- (iii) d-block elements
- (iv) f-block elements
- (b) As atomic number increases
 - (i) energy level of the orbitals decreases
 - (ii) energy level of the orbitals increases
 - (iii) energy level of the orbitals remains constant
 - (iv) energy level of the orbitals first increases then decreases

1

ET-105(B)

P.T.O.

(e)	Select the element having lower ionization		
	energy from each of the pairs given below :		3
	(i)	₃ Li and ₉ F	
	(ii)	₇ N and ₈ O	
	(iii)	₉ F and ₅₃ I	
(d)	Electrolysis of aqueous NaCl solution will		
	produce		2
	(i)	H ₂ (g)	
	(ii)	$H_2(g)$ and $Cl_2(g)$	
	(iii)	$H_2(g), Cl_2(g)$ and NaOH	
	(iv)	Na (s) and $\operatorname{Cl}_2(g)$	
(e)	Writ	e the enol form of 1,3-Diketone.	2
(f)	Write one contribution each of the following		
	scientists :		3
	(i)	Becquerel	
	(ii)	J. Chadwick	
	(iii)	Aston	
(g)	Name the process associated with each of		
	the following :		3
	(i)	Parkes' process	
	(ii)	Ostwald process	
		Solvay process	

.

ET-105(B)

2

- (h) Give one important use for each of the following compounds :
 - CCl₂F₂ (i)
 - $(C_2H_5)_4Pb$ (ii)
 - $CH_2 = CHCN$ (iii)
- In +ve electromeric effect, if an electron is (i) added to the following compound, then in which direction will π electron transfer take place $-C_3$ to C_2 or C_2 to C_3 ? Justify. $CH_3 - CH = CH - CH_2 - CH_3$
- (j) Teflon, polystyrene and neoprene, all are
 - (i) Copolymers
 - **Condensation polymers** (ii)
 - Homopolymers (iii)
 - Monomers (iv)
- Calculate the density ratio for BCC to FCC unit 2. cell of iron. (a_{BCC} is the lattice constant of BCC unit cell and \mathbf{a}_{FCC} is the lattice constant of FCC unit cell)

3

ET-105(B)

P.T.O.

8

3

3

1

- 3. $K_2Cr_2O_7$ solution is added into an acidic solution of FeSO₄.
 - (a) Write the balance equation for the reaction.
 - (b) Which one is the oxidising agent and which one is the reducing agent?
 - (c) What is the oxidation number of chromium before and after the reaction?
 - (d) What is the change in oxidation number of iron? 4+2+1+1=8
- 4. (a) Which ore is called the fool's gold?
 - (b) How is pig iron obtained in a blast furnace ? Give the chemical reactions occurring in a blast furnace when hematite, limestone and coke are charged in the blast furnace and air or oxygen is blown from the bottom. 2+6=8
- **5.** Answer the following :

3+3+1+1=8

- (a) When is a ligand termed as a chelating ligand? Give one example.
- (b) Which one $[Ni(en)_3]^{2+}$ or $[Ni(NH_3)_6]^{2+}$ will be more stable and why? ('en' stands for diethylene triamine)
- (c) Which one $[Ni(en)_3]^{2+}$ or $[Ni(NH_3)_6]^{2+}$ is a monodentate ligand ?
- (d) Ligand is a Lewis _____.

ET-105(B)

- 6. Name the following coordination compounds according to IUPAC nomenclature : 2+2+2+2=8
 - (a) $[Pt(NH_3)_2(NO_2)_2]$
 - (b) $[Co(NH_3)_3Cl_3]$.
 - (c) $[Cu(NH_3)_2]^+$
 - (d) $[Fe(CN)_6]^-$
- 7. How will you convert CH_3CH_2I into any of the two compounds given below? Also give the names of the reagents and conditions used and steps involved in each case. 4+4=8
 - (a) C_4H_{10}
 - (b) CH₃CH₂COOH
 - (c) C_2H_6
 - (d) C_2H_2
- 8. Answer the following :

6+2=8

- (a) How many isomers are possible for $C_4H_{10}O$? Draw all the structures.
- (b) A compound with molecular formula C_7H_{16} shows optical isomerism, the compound will be
 - (i) 2,3-Dimethyl pentane
 - (ii) 2,2-Dimethyl pentane
 - (iii) 2-Methyl hexane

P.T.O.

9. A mixture with the mole ratio of H₂ an I O₂ as
2: 1 is used to prepare water by the ollowing reaction:

I

8

 $2H_2(g) + O_2(g) \rightarrow 2H_2O\left(g\right)$

The total pressure in the container is 0.8 atm at 20°C before the reaction. The temperature is raised to 120°C and allowed to attain equilibrium. Determine the final pressure at 120°C after the reaction, assuming 80% yield of water.

(*Hint* : Use Gay-Lussac law to determine the initial pressure at 120°C)

10. (a) What will be the nature of slope, (dP/dV), for a plot between P and V when 1 mole of an ideal gas is expanded ?

(i) Isothermally (PV = const.)

- (ii) Adiabatically ($PV^{\gamma} = const.$), ($\gamma > 1$)
- (b) What will be the relation between T and V for an ideal gas under adiabatic condition ? (Given : $\Delta E = \overline{C}_V dT$) 4+4=8

ET-105(B)

6

- 11. (a) Under what condition will the work be a state function?
 - (b) The standard heat of formation of CH_4 (g), CO_2 (g) and H_2O (g) are $-76\cdot 2$, $-394\cdot 8$ and $-241\cdot 6$ kJ mol⁻¹ respectively. Calculate the amount of heat evolved by burning 1 m³ of CH_4 measured under standard condition. 2+6=8