B.Tech. Civil (Construction Management) /

B.Tech. Civil (Water Resources Engineering) /
B.Tech. (Aerospace Engineering)

Term-End Examination

10.322

December, 2016

ET-102 : MATHEMATICS - III

Time: 3 hours
Maximum Marks : 70
Note: Attempt any ten questions. Use of scientific calculator is allowed.

1. Show that the sequence $<x_{n}>$ given by
$x_{n}=1+\frac{1}{\boxed{2}}+\frac{1}{\boxed{3}}+\ldots+\frac{1}{\lfloor n}, n \in N$, is convergent. $\quad 7$
2. Test the convergence of the series
$\frac{1}{1^{p}}-\frac{1}{2^{p}}+\frac{1}{3^{p}}-\frac{1}{4^{p}}+\ldots$ for all $p>0$. 7
3. Find the Fourier series for the function $f(x)=|x|$ of period 2π. Also compute the values of the series at $x=0$ and $x=-5 \pi$.
4. Test the convergence of the series

$$
\begin{equation*}
\sum \frac{n^{n} x^{n}}{\lfloor\underline{n}}(x>0) \tag{7}
\end{equation*}
$$

ET-102
1
P.T.O.
5. (a) Find the Inverse Laplace Transform of

$$
\frac{s-1}{(s+3)\left(s^{2}+2 s+2\right)}
$$

(b) If \mathcal{L} represents Laplace Transform and if

$$
\mathscr{L}_{\{F(t)\}}=f(s), \text { and } G(t)=\left\{\begin{array}{cc}
F(t-a), & t>a \\
0, & t<a
\end{array},\right.
$$

$$
\text { then show that } \mathscr{L}[\mathrm{G}(\mathrm{t})]=\mathrm{e}^{-\mathrm{as}} \mathrm{f}(\mathrm{~s}) . \quad 4+3
$$

6. Using Laplace Transforms, solve the differential
equation $\frac{d^{2} y}{d t^{2}}-t \frac{d y}{d t}+y=1$,
given that $\mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=2$.
7. If the population of a country doubles in 50 years, in how many years will it triple under the assumption that the rate of increase is proportional to the number of inhabitants? 7
8. (a) Solve :

$$
x \log x \frac{d y}{d x}+y=2 \log x
$$

(b) Find a particular integral of the differential equation $\left(D^{4}+D^{2}+1\right) y=b e^{-x} \sin 2 x . \quad 4+3$
9. Show that $x=0$ is a singular point of the differential equation $x(1-x) \frac{d^{2} y}{d x^{2}}+(1-x) \frac{d y}{d x}-y=0$.
Determine the indicial equation, its roots and recurrence formula.
10. Solve the partial differential equation

$$
\begin{equation*}
\left(x^{2}-y^{2}-z^{2}\right) \frac{\partial z}{\partial x}+2 x y \frac{\partial z}{\partial y}=2 x z . \tag{7}
\end{equation*}
$$

11. Show that the deflection $u(x, t)$ satisfying the conditions

$$
\begin{aligned}
& u_{t t}=u_{x x}, 0<x<\pi, t>0, \\
& u(0, t)=0=u(\pi, 0), t \geq 0 \\
& u(x, 0)=k \sin 2 x, 0 \leq x \leq \pi \\
& \frac{\partial u}{\partial t}(x, 0)=0,0 \leq x \leq \pi
\end{aligned}
$$

is given by $u(x, t)=k \cos 2 t \cos 2 x$.
(Use the method of separation of variables).
12. (a) Determine the critical points of the transformation $\mathrm{w}=\mathrm{f}(\mathrm{z})$, where

$$
f(z)=z^{2}+2 z+1
$$

(b) Find the bilinear transformation that maps $\infty, i, 0$ into the points $0,-i, \infty$. $3+4$
13. Determine the analytic function $w=u+i v$, if $u+v=e^{2 x}[(x+y) \cos 2 y+(x-y) \sin 2 y]$ and express w in terms of z.
14. Is the differential equation, whose characteristic equation is $s^{5}-s^{4}+2 s^{3}+s^{2}-3 s+2=0$, stable under Hurwitz-Routh Criterion?
15. (a) Expand $\cos z$ in a Taylor series about the point $\mathrm{z}=\pi$.
(b) Find the Laurent series expansion of the function $f(z)=\frac{1}{z\left(1-z^{2}\right)} \quad$ in the region

$$
0<|z|<1 . \quad 4+3
$$

16. Determine the residues at all singularities of the function $f(z)=\frac{z^{3} e^{1 / z}}{1-z^{2}}$.
17. Evaluate

$$
\int_{0}^{\pi} \frac{a d \theta}{a^{2}+\cos ^{2} \theta}
$$

using the method of complex variables.

