B.Tech. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

December, 2016

BICE-022 : COMPUTER APPLICATIONS IN CIVIL ENGINEERING

Time : 3 hours Maximum Marks : 70

Note: Attempt any seven questions. Scientific calculator is allowed. All questions carry equal marks. All answers are to be written in English only.

1. (a) Find a root of the equation $x^{3}-4 x-9=0$, using Bisection method, correct to three decimal places.

5
(b) Discuss the following : $\quad 2 \times 2 \frac{1}{2}=5$
(i) Significant digits
(ii) Round-off errors
2. Find a real root of the equation $x=e^{-x}$, using the Newton-Raphson method.
3. Apply Gauss elimination method to solve the following equations:

$$
\begin{aligned}
& x+4 y-z=-5 \\
& x+y-6 z=-12 \\
& 3 x-y-z=4
\end{aligned}
$$

4. Solve the following equations by Jacobi's iteration method, correct to two decimal places.

$$
\begin{aligned}
& 10 x+y-z=11 \cdot 19 \\
& x+10 y+z=28 \cdot 08 \\
& -x+y+10 z=35 \cdot 61
\end{aligned}
$$

5. The table gives the distances in nautical miles of the visible horizon for the given heights in feet above the earth's surface. Using Newton's forward interpolation formula, find the values of y when $x=218$ feet.

x (Height)	y (Distance)
100	10.63
150	13.03
200	15.04
250	16.81
300	18.42
350	19.90
400	21.27

6. Find the polynomial $f(x)$ by using Lagrangian interpolation formula and hence find $f(3)$ for the following :

x	0	1	2	5
$f(x)$	2	3	12	147

7. (a) Use Trapezoidal rule to estimate the integral $\int_{0}^{2} e^{x^{2}} d x$ taking 10 intervals.
(b) Use Simpson's $\frac{1}{3}$ rule to find $\int_{0}^{0.6} e^{-x^{2}} d x$
by taking seven ordinates.
8. Use Runge-Kutta method of fourth order to solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1$ at $x=0.2$.
9. Discuss the following : $4 \times 2 \frac{1}{2}=10$
(a) Constrained Optimisation Problem
(b) Fibonacci Method
(c) Unimodal Functions
(d) Eigen Vectors
10. (a) Discuss the salient features of Golden Section method with suitable example. 5
(b) Discuss the salient features of unconstrained minimization problems. 5
