No. of Printed Pages : 4

BICE-022(S)

B.Tech. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

00108

December, 2016

BICE-022(S) : COMPUTER APPLICATIONS IN CIVIL ENGINEERING

Time : 3 hours

Maximum Marks : 70

- **Note :** All answers are to be written in English only. Attempt **all** questions. Scientific calculator is allowed. All questions carry equal marks.
- 1. (a) Find a positive real root of $x \cos x = 0$ by bisection method, correct to 3 decimal places between 0 and 1. $3\frac{1}{2}$
 - (b) Using Newton-Raphson method, find the real root of the equation $3x = \cos x + 1$, correct to 4 decimal places. $3\frac{1}{2}$

BICE-022(S)

P.T.O.

2. Use Gauss Elimination to solve the following system of equations :

7

7

7

$$2x + y + z = 10$$

 $3x + 2y + 3z = 18$
 $x + 4y + 9z = 16$

3. Solve the equations

$$x + y + z = 3$$

 $2x - y + 3z = 16$
 $3x + y - z = -3$

by the method of LU decomposition.

4. The population of a town (in thousands) was as given below. Estimate the population for the year 1895 using Newton Forward Interpolation Formula.

Year (x)	Population (y) (in thousands)	
1891	46	
1901	66	
1911	81	
1921	93	
1931	101	

BICE-022(S)

2

5. Find the cubic Lagrange's interpolating polynomial from the following data :

x	0	1	2	5
f(x)	2	3	12	147

6. Determine the largest eigen value and the corresponding eigen vector of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \text{ taking } \mathbf{X}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

using Power method.

7. Find the value of $y(1 \cdot 1)$ using Runge-Kutta method of fourth order given that $\frac{dy}{dx} = y^2 + xy$, y(1) = 1 take h = 0.05

$$y(1) = 1$$
, take $n = 0.00$.

1

8. Evaluate
$$\int_{0}^{1} \frac{dx}{1+x^2}$$
 using
(a) Simpson's $\frac{1}{3}$ rd rule taking $h = \frac{1}{4}$ 3
(b) Simpson's $\frac{3}{8}$ rule taking $h = \frac{1}{6}$ 3

Hence compute an approximate value of π in each case.

BICE-022(S)

P.T.O.

1

7

7

7

- 9. (a) Use Euler's method to obtain an approximate value of y(0.4) for the equation $\frac{dy}{dx} = x + y$, y(0) = 1 with h = 0.1. $3\frac{1}{2}$
 - (b) Discuss the salient features of the standard form of a linear programming problem with suitable examples. $3\frac{1}{2}$
- 10. (a) Explain the following terms : 3¹/₂
 (i) Fixed point numbers
 (ii) Floating point numbers
 (b) Explain the features of unimodal functions

with suitable examples.

BICE-022(S)

500

 $3\frac{1}{2}$