B.Tech. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

December, 2016

BICE-011 : STRUCTURAL ANALYSIS - II

Time: 3 hours Maximum Marks : 70

Note: Attempt any five questions. All questions carry equal marks. Assume any missing data.

1. A two-hinged parabolic arch has a span of 30 m and a central rise of 5 m . Calculate the maximum positive and negative bending moment at a section distant 10 m from the left support, due to a single point load of 10 kN rolling from left to right.
2. A three-hinged circular arch consists of a portion $A C$ of radius 3 m and rise of hinge C with respect to left abutment is 3 m . The right hand portion CB is of radius 8 m and the horizontal distance BC is 7 m . If a concentrated load of 10 kN acts at 6 m from the left hand end, determine the reactions at supports and maximum bending moment of the arch as shown in Figure 1.

Figure 1
3. Analyse the rigid frame as shown in Figure 2 by slope deflection method.

Figure 2
4. A horizontal beam $A B C D$ is supported on hinged support and is continuous over three spans of 3 m each as shown in Figure 3. Draw the BMD if the support A settles by $10 \mathrm{~mm}, B$ settles by 30 mm and C settles by 20 mm . Take $\mathrm{I}=2.4 \times 10^{6} \mathrm{~mm}^{4}, \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Figure 3
5. Determine the reaction components in the continuous beam as shown in Figure 4.

6 kN

Figure 4
6. Using influence line diagram, determine the shear force and bending moment at section C in the simply supported beam as shown in Figure 5.14

Figure 5
$\mathrm{AB}=14 \mathrm{~m}, \mathrm{AD}=2 \mathrm{~m}, \mathrm{DE}=4 \mathrm{~m}, \mathrm{EF}=\mathrm{FG}=2 \mathrm{~m}$, $G B=4 \mathrm{~m}$.
7. Determine the horizontal displacement of roller support of the truss as shown in Figure 6. Cross-section of all top chord members are $6000 \mathrm{~mm}^{2}$ and other members have $3000 \mathrm{~mm}^{2}$ X-section. Take E = $200 \mathrm{kN} / \mathrm{mm}^{2}$.

Figure 6
8. Determine the horizontal displacement and rotation at roller support in the frame shown in Figure 7 by Unit load method.

Figure 7

