No. of Printed Pages: 2

BASE-003

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

□□423 Dec

December, 2016

BASE-003 : HIGH SPEED AERODYNAMICS			
Time : 3 hours		Maximum Marks : 70	
No	te: Attempt any seven question equal marks.	ns. All questions carry	
1.	Derive the differential equations steady compressible supersonic		
2.	(a) Define strong shock wave wave in a compressible flo		
	(b) Develop the famous Pranormal shock waves.	andtl relation for $3+7=10$	
3.	Explain in detail the propert flow with neat sketches.	ies of hypersonic	
4.	Discuss in detail 'Transonic Are	ea Rule'. 10	
5.	Derive the Prandtl-Glauert linearised subsonic compressib		

6. Deduce the following relation :

$$M_2^2 = \frac{1 + [(\gamma - 1)/2]M_1^2}{\gamma M_1^2 - (\gamma - 1)/2}$$

where M_1 and M_2 are values of Mach number ahead and behind the shock respectively. $\gamma = C_p \ | \ C_v.$

10

7. What is hypersonic flow? Discuss the viscous interaction effect on hypersonic flows.

10

8. Explain with a neat sketch, the working and construction of a supersonic wind tunnel.

10

9. Discuss flow past forward swept wing. Also elaborate the effect of forward swept wing on stall characteristics and yaw motion.

10