No. of Printed Pages : 3

BAS-020

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

00173

December, 2016

BAS-020 : BASIC CONTROL THEORY

Time : 3 hours

Maximum Marks: 70

- **Note:** Attempt any **five** questions. All questions carry equal marks. Use of scientific calculator is permitted.
- 1. (a) Explain the importance of Laplace and Fourier transforms in control theory.
 - (b) Describe the dynamics of stable and unstable systems with the help of examples.
- (a) What do you mean by feedback control system ? Distinguish between open-loop and closed-loop control systems with the help of diagrams.

BAS-020

P.T.O.

6

8

6

(b) Define and explain the significance of phase margin and gain margin. How can you obtain the values of these margins from BODE plots ?

8

7

7

7

7

3. Determine whether the characteristic equations given below are having stable or unstable roots: $2 \times 7 = 14$

(a)
$$\lambda^3 + 6\lambda^2 + 12\lambda + 8 = 0$$

(b)
$$2\lambda^3 + 4\lambda^2 + 4\lambda + 12 = 0$$

- 4. Write short notes on the following : $2 \times 7 = 14$
 - (a) Routh-Hurwitz Stability Criterion
 - (b) Signal Conversion and Processing
- 5. (a) Explain the rules for graphical construction of root locus plot.
 - (b) How does addition of poles and zeroes affect the stability characteristic of a closed-loop system? Explain.
- 6. (a) Determine the value of k such that the roots of the characteristic equation given below lie on the left of line s = -1:

 $s^3 + 10s^2 + 18s + k = 0$

(b) Write a note on 'Proportional Integral Differential (PID) Controller'.

BAS-020

- 7. (a) Develop the transfer function of a control surface servo actuator for the servo based on an electric motor.
 - (b) Explain the following terms :
 - (i) Steady state error
 - (ii) Time delays
- 8. Sketch the Nyquist plot for the system having open-loop transfer function

G(s) H(s) =
$$\frac{1+4s}{s^2(1+s)(1+2s)}$$
.

BAS-020

10

4

14