No. of Printed Pages : 3

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

December, 2016

BAS-017 : FLIGHT MECHANICS

Time : 3 hours

443

Maximum Marks: 70

Note: Attempt seven questions in all. Question no. 1 is compulsory. Attempt any six questions from the remaining questions. Use of scientific calculator is permitted.

- 1. Explain the following terms and their importance : 3+3+4
 - (a) Trim Tab
 - (b) Wing dihedral
 - (c) Rudder power
- 2. Derive the expression for pitching moment curve slope and pitching moment at zero lift for stick-free longitudinal case, i.e., for $C_{m_{\alpha}}'$ and $C_{m_{0}}'$ for complete aircraft.

BAS-017

P.T.O.

10

- (a) Define adverse yaw. How can it be taken care of ? Explain the design criteria for rudder in adverse yaw.
 - (b) Define weathercock stability with the help of sketches. 2
- Define stick-fixed and stick-free neutral points. 4. Calculate stick-fixed and stick-free neutral points using the following data : 2+2+3+3 $C_{L_{\alpha_{uv}}} = 0.11 \text{ per deg}$ $X_{ac} = 0.25 \overline{C}$ $C_{L_{\alpha_{4}}} = 0.091 \text{ per deg}$ $\overline{C} = 1.7 \text{ m}$ $l_{+} = 7 \text{ m}$ $\eta_{+} = 0.95$ $C_{m_{\alpha_c}} = 0.12 \text{ per rad}$ $S_w = 30 m$ $C_{h_{\alpha_{\perp}}} = -0.016 \text{ per rad}$ $S_{+} = 4.5 m$ $C_{h_{\delta_{\alpha}}} = -0.027 \text{ per rad}$ $AR_{w} = 8$ $C_{L_{\delta_{\alpha}}} = 0.25 \text{ per rad}$
- (a) Define dihedral effect. How does dihedral affect the lateral stability of the aircraft ? 2+4

4

- (b) Derive the expression for aileron power.
- 6. Define stick force gradient and explain its importance. How can you estimate maneuver point (stick-fixed) experimentally? 2+3+5

BAS-017

2

- 7. Define the following terms :
 - (a) **Damping** in yaw
 - (b) Restoring characteristics
 - (c) Elevator effectiveness
 - (d) Trim condition
 - (e) Stability

8. Write short notes on the following :

- 2×5
- (a) Methods of Aerodynamic Balancing
- (b) Control of Wing Torsional Diversion

9. Define static stability. Calculate C_{m_0} (pitching moment coefficient at zero lift) and $C_{m_{\alpha}}$ (pitching moment curve slope) for complete aircraft for stick-fixed condition using the following data : 2+4+4

 $C_{L_{0w}} = 0.31$ $C_{m_{ac_w}} = -0.11$ $C_{m_0} = -0.01$ $C_{L_{\alpha_{-}}} = 0.11 \text{ per deg}$ C_{mα}fus = 0·12 per rad $C_{L_{\alpha_{\star}}} = 0.091 \text{ per deg}$ $S_w = 30 m^2$ $X_{C_8} = 0.29 \overline{C}$ $X_{ac} = 0.25 \overline{C}$ $S_t = 4.5 m^2$ $AR_w = 8$ $l_{+} = 5.5 \text{ m}$ $i_w = 1.1 \deg$ $\eta_t = 0.92$ $i_{+} = -1.1 \text{ deg}$

 $\overline{C} = 1.9 \text{ m}$

BAS-017

3