B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination
December, 2016

BAS-017 : FLIGHT MECHANICS

Time: 3 hours
Maximum Marks : 70
Note: Attempt seven questions in all. Question no. 1 is compulsory. Attempt any six questions from the remaining questions. Use of scientific calculator is permitted.

1. Explain the following terms and their importance :
(a) Trim Tab
(b) Wing dihedral
(c) Rudder power
2. Derive the expression for pitching moment curve slope and pitching moment at zero lift for stick-free longitudinal case, i.e., for $\mathrm{C}_{\mathrm{m}_{\alpha}}$ and $\mathrm{C}_{\mathrm{m}_{0}^{\prime}}^{\prime}$ for complete aircraft.
3. (a) Define adverse yaw. How can it be taken care of ? Explain the design criteria for rudder in adverse yaw. $2+2+4$
(b) Define weathercock stability with the help of sketches.
4. Define stick-fixed and stick-free neutral points. Calculate stick-fixed and stick-free neutral points using the following data:

$$
\begin{array}{ll}
\mathrm{X}_{\mathrm{ac}}=0.25 \overline{\mathrm{C}} & \mathrm{C}_{\mathrm{L}_{\alpha_{\mathrm{w}}}}=0.11 \text { per deg } \\
\overline{\mathrm{C}}=1.7 \mathrm{~m} & \mathrm{C}_{\mathrm{L}_{\alpha_{\mathrm{t}}}}=0.091 \text { per deg } \\
l_{\mathrm{t}}=7 \mathrm{~m} & \eta_{\mathrm{t}}=0.95 \\
\mathrm{~S}_{\mathrm{w}}=30 \mathrm{~m} & \mathrm{C}_{\mathrm{m}_{\alpha_{\mathrm{f}}}}=0.12 \text { per rad } \\
\mathrm{S}_{\mathrm{t}}=4.5 \mathrm{~m} & \mathrm{C}_{\mathrm{h}_{\alpha_{\mathrm{t}}}}=-0.016 \text { per rad } \\
\mathrm{AR}_{\mathrm{w}}=8 & \mathrm{C}_{\mathrm{h}_{\delta_{e}}}=-0.027 \text { per rad } \\
\mathrm{C}_{\mathrm{L}_{\delta_{e}}}=0.25 \text { per rad } &
\end{array}
$$

5. (a) Define dihedral effect. How does dihedral affect the lateral stability of the aircraft? $\quad 2+4$
(b) Derive the expression for aileron power. 4
6. Define stick force gradient and explain its importance. How can you estimate maneuver point (stick-fixed) experimentally?
$2+3+5$
7. Define the following terms :
(a) Damping in yaw
(b) Restoring characteristics
(c) Elevator effectiveness
(d) Trim condition
(e) Stability
8. Write short notes on the following :
(a) Methods of Aerodynamic Balancing
(b) Control of Wing Torsional Diversion
9. Define static stability. Calculate $\mathrm{C}_{\mathrm{m}_{0}}$ (pitching moment coefficient at zero lift) and $\mathrm{C}_{\mathrm{m}_{\alpha}}$ (pitching moment curve slope) for complete aircraft for stick-fixed condition using the following data :

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{L}_{0_{\mathrm{w}}}}=0.31 & \mathrm{C}_{\mathrm{m}_{\mathrm{ac}_{\mathrm{w}}}}=-0.11 \\
\mathrm{C}_{\mathrm{L}_{\alpha_{\mathrm{w}}}}=0.11 \text { per deg } & \mathrm{C}_{\mathrm{m}_{0_{\text {fus }}}}=-0.01
\end{array}
$$

$\mathrm{C}_{\mathrm{L}_{\alpha_{\mathrm{t}}}}=0.091$ per deg $\quad \mathrm{C}_{\mathrm{m}_{\text {fus }}}=0.12$ per rad
$\mathrm{X}_{\mathrm{C}_{\delta}}=0.29 \overline{\mathrm{C}}$
$\mathrm{S}_{\mathrm{w}}=30 \mathrm{~m}^{2}$
$X_{a c}=0.25 \overline{\mathrm{C}}$
$S_{t}=4.5 \mathrm{~m}^{2}$
$\mathrm{AR}_{\mathrm{w}}=8$
$l_{\mathrm{t}}=5.5 \mathrm{~m}$
$\mathrm{i}_{\mathrm{w}}=1 \cdot 1 \mathrm{deg}$
$\eta_{t}=0.92$
$i_{t}=-1 \cdot 1 \mathrm{deg}$
$\overline{\mathrm{C}}=1.9 \mathrm{~m}$

