No. of Printed Pages : 4

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

December, 2016

00043

BAS-012 : AERODYNAMICS – I

Time : 3 hours

Maximum Marks : 70

- **Note :** Attempt any **seven** questions. All questions carry equal marks. Use of scientific calculator is permitted.
- 1. (a) Define the following :
 - (i) Centre of Pressure
 - (ii) Aerodynamic Centre
 - (iii) Jet Flap
 - (iv) Stall Condition
 - (b) What is the difference between Euler's model and Navier-Stokes model of equations ? Write the generic form of Navier-Stokes equations. 5+5
- 2. (a) Briefly explain the flow in a C-D nozzle with the help of a neat sketch.
 - (b) What are the characteristics of a vortex flow ? State and prove the Kutta-Zhukovsky theorem. 5+5

BAS-012

P.T.O.

- (a) Draw a neat sketch of a supersonic wind tunnel circuit and explain the function of each component.
 - (b) Discuss lift on rotating cylinder in uniform flow. 5+5
- 4. (a) How does Van der Waals equation differ from ideal gas equation ? Explain.
 - (b) A point source is a point where an incompressible fluid is imagined to be created and sent out evenly in all directions. Determine its velocity potential and stream function. 5+5
- 5. (a) If the stream function for steady flow is given by $\psi = y^2 - x^2$, determine whether the flow is rotational or irrotational. Then determine the velocity potential ϕ .
 - (b) The stream function for a two-dimensional flow is given by $\psi = 2xy$. Calculate the velocity at the point P(2, 3). Also find the velocity potential function. 5+5
- 6. (a) Distinguish between the following :
 - (i) Steady and Unsteady flow
 - (ii) Rotational and Irrotational flow

BAS-012

2

(b) In a two-dimensional incompressible flow, the fluid velocity components are given by

u = x - 4y and v = -y - 4x.

Show that the velocity potential exists and determine its form. Also find the stream function. 5+5

- 7. (a) Differentiate between the following :
 - (i) Streamlined body and Bluff body
 - (ii) Friction drag and Pressure drag
 - (b) A flat plate 2 m × 2 m moves at 40 km/hour in stationary air of density 1.25 kg/m³. If the coefficient of drag and lift are 0.2 and 0.8 respectively, find
 - (i) the lift force,
 - (ii) the drag force,
 - (iii) the resultant force, and
 - (iv) the power required to keep the plate in motion. 5+5
- 8. (a) Define Doublet. Draw its streamlines.
 - (b) How are streamlines and equipotential lines related to each other ? Explain. 5+5

BAS-012

P.T.O.

9. Write short notes on any two of the following: $2 \times 5 = 10$

- (a) Magnus Effect
- (b) Boundary Layer
- (c) Pitching Moment
- (d) Mach Number