B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

$$
\square \square \leq 43
$$

December, 2016

BAS-008 : STRENGTH OF MATERIALS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Define (i) Young's modulus, (ii) Shear modulus, and (iii) Poisson's ratio. Write the relationship between them.
(b) Derive an expression for elongation of a flat tapering bar subjected to an axial pull.
2. A steel rod is 18 m long at a temperature of $25^{\circ} \mathrm{C}$. Find the free expansion when the temperature is raised to $85^{\circ} \mathrm{C}$. Also find the temperature stress produced when (i) the expansion is fully prevented, and (ii) the rod is allowed to expand by 4.5 m .
Take $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$ and $\alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.
3. Two forces of 50 kN and 100 kN are applied to a bar fixed between two unyielding supports. Compute the stresses induced in different materials. The material properties and that of the bar are as shown in figure.

4. Draw the SFD and BMD for the loaded beam as shown in the figure below :

5. (a) What is torsional stiffness ? Explain its significance.
(b) A relatively thin walled tube and a solid circular shaft have the same cross-sectional area. Compare their torsional stiffness.
6. At a point in a strained material, the state of stress is as shown in the figure below. Compute the following :
(a) Principal stresses and Principal planes
(b) Maximum shearing stress and Maximum shearing planes

Sketch these planes. 10
(
60 MPa
7. A simply supported beam $A B$ has a span of 5 m and carries a point load of 60 kN at a distance of 3 m from its left end A. Find the ratio of maximum deflection to the deflection under point load.
8. (a) List the assumptions made in Euler's theory of long columns.
(b) Derive the expression for Euler's buckling load for a column with both ends fixed.
9. (a) Define any two of the following: $2 \times 3=6$
(i) Principal plane and Principal stress
(ii) Euler's load and Rankine's load
(iii) Shearing stress and Flexural strength
(b) Find the expressions for maximum slope and maximum deflection for a cantilever beam subjected to a point load at the free end.
10. (a) Derive the relationship between BM, SF
and intensity of UDL.
(b) Show that the principal planes and maximum shearing planes are inclined at 45° with each other.

