No. of Printed Pages: 3

## MCA (Revised) Term-End Examination

### MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 hours

Maximum Marks : 50

# Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Using induction, show that

$$T_n = 2^n - 1$$
, where  $n \ge 1$ ,

where  $T_n = 2T_{n-1} + 1.$  5

- (b) Prove that the complement of  $\overline{G}$  is G.
- (c) Draw at least 3 non-isomorphic graphs on 4 vertices.
- (d) Prove that  $a_n = \frac{3n}{2} 2$  is a solution to the recurrence  $a_n = 2a_{n/2} + 2$ , where n is a power of 2 and  $a_2 = 1$ . 5

MCS-033

**P.T.O**.

5

5

### MCS-033

1

- **2.** (a) Find the number of bijections on a set of n elements, where  $n \ge 1$ .
  - (b) Consider the graph on 5 vertices and 7 edges given in the figure. Find  $x_1$  to  $x_5$  walks of length 8 and length 4 respectively.



- 3. (a) If G is a graph with n vertices and k components, then prove that G can have at least n - k edges and at most  $\left\{\frac{(n-k)(n-k+1)}{2}\right\}$  edges.
  - (b) Solve the third order recurrence  $U_n - 9U_{n-1} + 26U_{n-2} - 24U_{n-3} = 0,$ where  $n \ge 3$ , with the initial conditions  $U_0 = 6, U_1 = 17$  and  $U_2 = 53.$  5
- 4. (a) Solve the recurrence  $d_k = k d_{k-1} + (-1)^k \text{ if } k \ge 2 \text{ with } d_1 = 0.$  5
  - (b) Find  $\lambda$  (G), where G is the Petersen graph. 5

#### MCS-033

2

5

5

5

- **5.** (a)
  - Draw three spanning trees of the following graph :



- (b) What is the difference between an Eulerian graph and an Eulerian circuit ?
- (c) Construct a graph with chromatic number 5.
- (d) Solve the recurrence relation  $a_n = a_{n/2} + 1$ for  $n = 2^k$ , where  $k \ge 1$ ,  $a_1 = 0$ .

3

2

3

2

MCS-033