MCA (Revised)
 Term-End Examination
 $\square \vec{r} 55$ December, 2016

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time: 2 hours
Maximum Marks : 50

Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Using induction, show that
$T_{n}=2^{n}-1$, where $n \geq 1$,
where $T_{n}=2 T_{n-1}+1$.
(b) Prove that the complement of $\overline{\mathrm{G}}$ is G .
(c) Draw at least 3 non-isomorphic graphs on 4 vertices.
(d) Prove that $a_{n}=\frac{3 n}{2}-2$ is a solution to the recurrence $a_{n}=2 a_{n / 2}+2$, where n is a power of 2 and $a_{2}=1$.
2. (a) Find the number of bijections on a set of n elements, where $n \geq 1$.
(b) Consider the graph on 5 vertices and 7 edges given in the figure. Find x_{1} to x_{5} walks of length 8 and length 4 respectively.

3. (a) If G is a graph with n vertices and k components, then prove that G can have at least $n-k$ edges and at most $\left\{\frac{(n-k)(n-k+1)}{2}\right\}$ edges.
(b) Solve the third order recurrence
$\mathrm{U}_{\mathrm{n}}-9 \mathrm{U}_{\mathrm{n}-1}+26 \mathrm{U}_{\mathrm{n}-2}-24 \mathrm{U}_{\mathrm{n}-3}=0$,
where $n \geq 3$, with the initial conditions
$\mathrm{U}_{0}=6, \mathrm{U}_{1}=17$ and $\mathrm{U}_{2}=53$.
4. (a) Solve the recurrence

$$
\begin{equation*}
d_{k}=k d_{k-1}+(-1)^{k} \text { if } k \geq 2 \text { with } d_{1}=0 \tag{5}
\end{equation*}
$$

(b) Find $\lambda(G)$, where G is the Petersen graph.
5. (a) Draw three spanning trees of the following graph :

(b) What is the difference between an Eulerian graph and an Eulerian circuit?
(c) Construct a graph with chromatic number 5.

3
(d) Solve the recurrence relation $a_{n}=a_{n / 2}+1$ for $n=2^{k}$, where $k \geq 1, a_{1}=0$.

2

