MCA (Revised)
Term-End Examination
December, 2016

MCS-033(S) : ADVANCED DISCRETE MATHEMATICS

Time: 2 hours
Maximum Marks : 50

Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Find the order and degree of the following recurrence relation. Also determine whether they are homogeneous or non-homogeneous.
(i) $a_{n}=c a_{n / m}+5$
(ii) $a_{n}=3 a_{n-1}+n^{2}$
(iii) $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots c_{n-k} a_{n-k}$
(b) Solve the following recurrence relation using the characteristic equation :
$t_{n}=6 t_{n-1}-9 t_{n-2}$ for $n>1$
$\mathrm{t}_{0}=0$
$t_{1}=1$
(c) Determine whether the following graphs are isomorphic. If yes, justify your answer.

(d) What is an undirected graph ? Prove that an undirected graph has even number vertices of odd degree.
2. (a) Define n-regular graph. Show for which value of n the following graphs are regular : 5
(i) K_{n}
(ii) \mathbf{Q}_{n}
(b) What is a generating function ? Find the generating function for the following sequence :

$$
1,1,1,1,1
$$

(c) How many edges does a complete graph of 5 vertices have?
3. (a) Derive and explain a recursive relation expression for binary search algorithm.
(b) Define a graph and a subgraph. Show that for a subgraph H of a graph G

$$
\begin{equation*}
\Delta(\mathrm{H}) \leq \Delta(\mathrm{G}) . \tag{5}
\end{equation*}
$$

4. (a) Define a bipartite graph. For which value of n is Q_{n} bipartite?
(b) State and prove Euler's formula for a planar graph. 4
(c) Show that a connected bipartite graph has a chromatic number of 2 .
5. (a) State and prove Ore's theorem for a graph to be a Hamiltonian graph.6
(b) What is a planar graph ? Determine whether the given graph is a planar. If so, redraw it such that no edges cross each other.

