MCA (Revised) / BCA (Revised)

Term-End Examination
ロ5スEE
December, 2016

MCS-012 : COMPUTER ORGANISATION AND ASSEMBLY LANGUAGE PROGRAMMING

Time : 3 hours
Maximum Marks : 100
(Weightage 75\%)
Note: Question number 1 is compulsory and carries 40 marks. Attempt any three questions from the rest.

1. (a) State True or False with a brief justification (if false).
(i) Boolean relation $\mathrm{A}+\mathrm{AB}=\mathrm{B}$.
(ii) Hardware interrupts can be invoked with the help of INT function.
(iii) 8086 has a 16 -bit data bus and a 20 -bit address bus.
(iv) Wilkes Control does not provide a branching microinstruction.
(v) 1 MB equals 2^{30} bits.
(b) Represent the number 1110.0011 in IEEE 754 floating point single precision number representation.
(c) Perform the following arithmetic operations :
(i) Add (-125) and (-105) in 8 -bit register using signed 2 's complement representation of negative numbers. Also indicate overflow, if any.
(ii) Convert the decimal number 789 to octal, hexadecimal and BCD.
(d) Simplify the following expression using Karnaugh map in sum of the products form :
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,5,7,9,11,13,15)$
Also draw the logic circuit for the simplified expression.
(e) Design a 4-bit serial input shift register and explain its working.
(f) Draw a suitable diagram and explain the execution of subroutines CALL \& RETURN using stack.
(g) An 8-bit register contains the binary value 11001101. What is the register value after an arithmetic shift right ? State whether there is an overflow.
(h) Write a program in 8086 assembly language that counts the number of characters in a string stored in the data segment.
2. (a) What is Von-Neumann architecture ? Explain.
(b) Draw an internal organization of $32 \times 4 \mathrm{RAM}$ and explain the purpose of control signals used here.
(c) Demonstrate the use of Hamming code for a 4-bit word sequence transmitted as 1000 whereas received as 1100 . Make suitable assumptions.
(d) With reference to the instruction execution, explain how the following steps are performed and by which component :
(i) Calculate the address of the next instruction to be executed.
(ii) Decode the instruction.
(iii) Computation of operand's address.
3. (a) How can interleaved memory mechanism be used to improve the overall processing speed of a computer system ? Explain with the help of a diagram.
(b) How many RAM chips of size $512 \mathrm{~K} \times 1$ bit are required to build 1 M byte main memory?
(c) A digital computer has a memory unit of $64 \mathrm{~K} \times 16$ and a cache memory of 1 K words. The cache uses direct mapping with a block size of four words. How many bits are there in tag, index and block fields of the address?
(d) Define the following terms : 6
(i) Seek time
(ii) Latency time
(iii) Hit ratio in cache
4. (a) Draw a logic diagram of one stage of logic circuit for implementation of AND, OR, XOR and complement microoperations. Also draw and explain its functional representation.
(b) Differentiate between the following :
(i) Hardwired v/s Microprogrammed control
(ii) $\underset{\substack{\text { Horizontal } \\ \text { microinstructions }}}{\text { v/s }} \quad$ Vertical
(c) What is the purpose of multiple segments in 8086 ?
(d) Explain the following 8086 microprocessor addressing modes with the help of an example for each :
(i) Register Indirect
(ii) Based Indexed
5. (a) Write a step-by-step process to explain how an interrupt is handled by a computer.
(b) Draw the logic diagram of JK flip-flop along with its characteristic table and excitation table. Explain various state transitions.
(c) Write an assembly program using 8086 assembly language that adds two 2-digit packed BCD numbers stored in the memory. Make suitable assumptions. 6
