BACHELOR OF COMPUTER APPLICATIONS
 (BCA) (Revised)

Term-End Examination
모5․ December, 2016

BCS-012 : BASIC MATHEMATICS

Time: 3 hours
Maximum Marks : 100
Note: Question number 1 is compulsory. Attempt any three questions from the remaining four questions.

1. (a) Evaluate the determinant
$\left|\begin{array}{lll}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|$, where ω is a cube root of unity.
(b) Using determinant, find the area of the triangle whose vertices are ($-3,5$), $(3,-6)$ and (7, 2).
(c) Use the principle of mathematical induction to show that $2+2^{2}+\ldots+2^{n}=2^{n+1}-2$ for every natural number n.
(d) Find the sum of all integers between 100 and 1000 which are divisible by 9 .
(e) Check the continuity of the function $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=0$:
$f(x)=\left\{\begin{array}{cc}\frac{|x|}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$
(f) If $\mathrm{y}=\frac{\ln \mathrm{x}}{\mathrm{x}}$, show that $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{2 \ln \mathrm{x}-3}{\mathrm{x}^{3}}$.
(g) If the mid-points of the consecutive sides of a quadrilateral are joined, then show (by using vectors) that they form a parallelogram.
(h) Find the scalar component of projection of the vector $\vec{a}=2 \hat{i}+3 \hat{j}+5 \hat{k}$ on the vector $\vec{b}=2 \hat{i}-2 \hat{j}-\hat{k}$.
2. (a) Solve the following system of linear equations using Cramer's rule :
$x+2 y-z=-1$,
$3 \mathrm{x}+8 \mathrm{y}+2 \mathrm{z}=28$,
$4 x+9 y+z=14$.
(b) Let $\mathrm{A}=\left[\begin{array}{rr}2 & 3 \\ -1 & 2\end{array}\right]$ and $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-4 \mathrm{x}+7$.

Show that $f(A)=O_{2 \times 2}$. Hence find A^{5}.
(c) Determine the rank of the matrix

$$
A=\left[\begin{array}{rrrr}
0 & 1 & 2 & 1 \tag{5}\\
1 & -1 & 2 & 0 \\
5 & 3 & 14 & 4
\end{array}\right]
$$

3. (a) The common ratio of a G.P. is $-4 / 5$ and the sum to infinity is $80 / 9$. Find the first term of the G.P.
(b) If $\left(\frac{1-i}{1+i}\right)^{100}=a+i b$, then show that $a=1$,

$$
\begin{equation*}
\mathrm{b}=0 \text {. } \tag{5}
\end{equation*}
$$

(c) Solve the equation $8 x^{3}-14 x^{2}+7 x-1=0$, the roots being in G.P.
(d) Find the solution set for the inequality $15 x^{2}+4 x-4 \geq 0$.
4. (a) If a mothball evaporates at a rate proportional to its surface area $4 \pi r^{2}$, show that its radius decreases at a constant rate.
(b) Find the absolute maximum and minimum of the function $f(x)=\frac{x^{3}}{x+2}$ on the interval $[-1,1]$.
(c) Evaluate the integral

$$
\begin{equation*}
\mathrm{I}=\int \frac{\mathrm{dx}}{1+3 \mathrm{e}^{\mathrm{x}}+2 \mathrm{e}^{2 \mathrm{x}}} \tag{5}
\end{equation*}
$$

(d) Find the length of the curve

$$
\begin{array}{cr}
y=2 x+3 \text { from }(1,5) \text { to }(2,7) . & 5 \tag{5}\\
3 & \text { P.T.O. }
\end{array}
$$

5. (a) Find the value of λ for which the vectors

$$
\begin{align*}
& \vec{a}=\hat{i}-4 \hat{j}+\hat{k}, \quad \vec{b}=\lambda \hat{i}-2 \hat{j}+\hat{k} \text { and } \\
& \vec{c}=2 \hat{i}+3 \hat{j}+3 \hat{k} \text { are coplanar. } \tag{5}
\end{align*}
$$

(b) Find the equations of the line (both Vector and Cartesian) passing through the point ($1,-1,-2$) and parallel to the vector $3 \hat{i}-2 \hat{j}+5 \hat{k}$.
(c) A manufacturer makes two types of furniture, chairs and tables. Both the products are processed on three machines $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3}. Machine A_{1} requires 3 hours for a chair and 3 hours for a table, machine A_{2} requires 5 hours for a chair and 2 hours for a table and machine A_{3} requires 2 hours for a chair and 6 hours for a table. The maximum time available on machines A_{1}, A_{2} and A_{3} is 36 hours, 50 hours and 60 hours respectively. Profits are ₹ 20 per chair and ₹ 30 per table. Formulate the above as a linear programming problem to maximize the profit and solve it.

