POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Time: 3 hours
Maximum Marks : 50
Note: (i) All questions are compulsory. Question Nos. 2 to 5 have internal choices.
(ii) Use of scientific calculator is allowed.
(iii) Use of Formulae and Statistical Tables Booklet for PGDAST is allowed.
(iv) Symbols have their usual meanings.

1. State whether the following statements are True or False. Give reason in support of your answer.

$$
5 \times 2=10
$$

(a) The variation due to assignable causes in the quality of cricket balls cannot be removed.
(b) The C-chart is used to control the number of defectives in a process.
(c) The probability of rejecting a lot of Acceptance Quality Level (AQL) is known as consumer's risk.
(d) Two independent components of a system are connected in parallel configuration. If the reliabilities of these components are 0.2 and 0.3 respectively, reliability of the system will be 0.44 .
(e) If the value of a game is 4 , the game is fair.
2. A milk company uses automatic machines to fill 500 mL milk packets. A quality control inspector inspected four packets for each sample at given time-intervals and measured the weight of each filled packet.

Averages (\bar{X}) and Ranges (R) of 10 samples are shown in the following table :

Sample No.	$\overline{\mathbf{X}}$	\mathbf{R}
1	506.67	20
2	503.33	40
3	536.67	80
4	510.00	20
5	493.33	30
6	513.33	20
7	520.00	20
8	513.00	40
9	500.00	20
10	510.00	30

Using \bar{X} and R - charts, draw conclusion about the process by assuming assignable causes for any out-of-control points. If the process is out-of-control, calculate the revised centre line and control limits to bring the process under statistical control.

OR

(a) To monitor the manufacturing process of laptops, a quality control engineer randomly selects 40 laptops from the production line each day over a period of 10 days. The laptops are inspected for certain defects and the numbers of defective laptops found each day are recorded in the following table:

Day	1	2	3	4	5	6	7	8	9	10
Number of Defective Laptops	3	7	6	10	2	5	3	6	7	1

Construct the appropriate control chart and state whether the process is under control.
(b) From a transistor production line, 12 transistors are chosen randomly. The number of defects in each transistor are given below :

Transistor number	1	2	3	4	5	6	7	8	9	10	11	12
Number of Defects	4	5	3	0	12	4	6	3	1	4	1	5

(i) Which control chart should be used in this case? Calculate the control limits for this chart.
(ii) Are these data from a controlled process ?
3. A shirt manufacturing company supplies shirts in lots of size 150 to a buyer. A single sampling plan with $\mathrm{n}=10$ and $\mathrm{c}=1$ is being used for the lot inspection. The company and the buyer decide that $\mathrm{AQL}=0.08$ and $\mathrm{LTPD}=0.16$.

If there are 15 defective shirts in each lot, compute the :
(a) Probability of accepting the lot.
(b) Producer's risk and consumer's risk.
(c) Average Outgoing Quality (AOQ), if the rejected lots are screened and all defective shirts are replaced by non-defectives.
(d) Average Total Inspection (ATI).

OR

(a) Differentiate between: $\quad 2+2$
(i) Single sampling plan and Double sampling plan
(ii) Average Sample Number (ASN) and Average Total Inspection (ATI)
(b) A manufacturer of silicon chips produces lots of 100 chips for shipment. A buyer uses a double sampling plan with $\mathrm{n}_{1}=5, \mathrm{c}_{1}=0$, $n_{2}=15, c_{2}=1$ to test the quality of the lots. Given that the incoming quality of a lot is 0.02 . Calculate the probabilities of accepting the lot on the (i) first sample, and
(ii) second sample
4. Consider the following payoff table :

States of Nature	Courses of Action			
	A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$
$\mathrm{~N}_{1}$	400	900	900	1000
$\mathrm{~N}_{2}$	200	400	700	-300
$\mathrm{~N}_{3}$	600	200	500	700

Identify the optimum course of action under :
(a) Optimistic criterion (assume that payoff values represent profits)
(b) Pessimistic criterion
(c) Hurwicz criterion
(d) Regret criterion (assume that payoff values represent losses)

OR
(a) A game has the following payoff matrix :

		Player B		
		B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$
Player A	A_{1}	5	7	4
	$\mathrm{~A}_{2}$	4	3	0
	$\mathrm{~A}_{3}$	6	1	3

Obtain the :
(i) Optimal strategy for player A,
(ii) Optimal strategy for player B, and
(iii) Value of the game.

Is the game fair?
(b) Solve the two-person zero-sum game having the following payoff matrix for player A :

		Player B	
		B_{1}	$\mathrm{~B}_{2}$
Player A	A_{1}	-2	-1
	$\mathrm{~A}_{2}$	4	-3

5. The failure data for 1000 electronic components $\mathbf{1 0}$ are shown in the table given below :

Operating time (in hours)	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
No. of failures	207	175	148	120	105	67	50	74	35	19

Estimate :

(a) Reliability,
(b) Cumulative failure distribution,
(c) Failure density, and
(d) Hazard function

OR

Evaluate reliability of the system for which the reliability block diagram is shown in the figure given below :

Assume that all components are independent and reliability of each component is given as follows :
$\mathrm{R}_{1}=0.80, \mathrm{R}_{2}=0.75, \mathrm{R}_{3}=0.50, \mathrm{R}_{4}=0.65$,
$\mathrm{R}_{5}=0.76, \mathrm{R}_{6}=0.60, \mathrm{R}_{7}=0.95, \mathrm{R}_{8}=0.92$
where $R_{i}(i=1,2, \ldots, 8)$ denotes reliability of component i.

