No. of Printed Pages : 7

MSTE-001

# POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

| О | <b>Term-End Examination</b> |
|---|-----------------------------|
|   | December, 2015              |
| 0 |                             |

## MSTE - 001 : INDUSTRIAL STATISTICS - I

Time : 3 hours

チ

Maximum Marks : 50

Note: (i) All questions are compulsory. Question Nos. 2 to 5 have internal choices.

- (ii) Use of scientific calculator is allowed.
- (iii) Use of Formulae and Statistical Tables Booklet for PGDAST is allowed.
- (iv) Symbols have their usual meanings.

1. State whether the following statements are **True** or **False**. Give reason in support of your answer.

5x2=10

- (a) The variation due to assignable causes in the quality of cricket balls cannot be removed.
- (b) The C-chart is used to control the number of defectives in a process.
- (c) The probability of rejecting a lot of Acceptance Quality Level (AQL) is known as consumer's risk.
- (d) Two independent components of a system are connected in parallel configuration. If the reliabilities of these components are 0.2 and 0.3 respectively, reliability of the system will be 0.44.
- (e) If the value of a game is 4, the game is fair.

**MSTE-001** 

2. A milk company uses automatic machines to fill 1 500 mL milk packets. A quality control inspector inspected four packets for each sample at given time-intervals and measured the weight of each filled packet.

Averages  $(\overline{X})$  and Ranges (R) of 10 samples are shown in the following table :

| Sample No. | x      | R  |
|------------|--------|----|
| 1          | 506.67 | 20 |
| 2          | 503.33 | 40 |
| 3          | 536.67 | 80 |
| 4          | 510.00 | 20 |
| 5          | 493.33 | 30 |
| 6          | 513.33 | 20 |
| 7          | 520.00 | 20 |
| 8          | 513.00 | 40 |
| 9          | 500.00 | 20 |
| 10         | 510.00 | 30 |

Using  $\overline{X}$  and R - charts, draw conclusion about the process by assuming assignable causes for any out-of-control points. If the process is out-of-control, calculate the revised centre line and control limits to bring the process under statistical control.

2

**MSTE-001** 

(a) To monitor the manufacturing process of laptops, a quality control engineer randomly selects 40 laptops from the production line each day over a period of 10 days. The laptops are inspected for certain defects and the numbers of defective laptops found each day are recorded in the following table :

| Day                               | 1 | 2 | 3 | 4  | 5 | 6 | 7 | 8 | 9 | 10 |
|-----------------------------------|---|---|---|----|---|---|---|---|---|----|
| Number of<br>Defective<br>Laptops | 3 | 7 | 6 | 10 | 2 | 5 | 3 | 6 | 7 | 1  |

Construct the appropriate control chart and state whether the process is under control.

(b) From a transistor production line, 12 transistors are chosen randomly. The number of defects in each transistor are given below : 3+2

| Transistor<br>number | 1 | 2 | 3 | 4 | 5  | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|----------------------|---|---|---|---|----|---|---|---|---|----|----|----|
| Number of<br>Defects | 4 | 5 | 3 | 0 | 12 | 4 | 6 | 3 | 1 | 4  | 1  | 5  |

- Which control chart should be used in this case ? Calculate the control limits for this chart.
- (ii) Are these data from a controlled process ?

P.T.O.

3

3. A shirt manufacturing company supplies shirts in lots of size 150 to a buyer. A single sampling plan with n = 10 and c = 1 is being used for the lot inspection. The company and the buyer decide that AQL = 0.08 and LTPD = 0.16. 2+4+2+2

If there are 15 defective shirts in each lot, compute the :

- (a) Probability of accepting the lot.
- (b) Producer's risk and consumer's risk.
- (c) Average Outgoing Quality (AOQ), if the rejected lots are screened and all defective shirts are replaced by non-defectives.
- (d) Average Total Inspection (ATI).

#### OR

- (a) Differentiate between :
  - (i) Single sampling plan and Double sampling plan
  - (ii) Average Sample Number (ASN) and Average Total Inspection (ATI)
- (b) A manufacturer of silicon chips produces lots of 100 chips for shipment. A buyer uses a double sampling plan with  $n_1=5$ ,  $c_1=0$ ,  $n_2=15$ ,  $c_2=1$  to test the quality of the lots. Given that the incoming quality of a lot is 0.02. Calculate the probabilities of accepting the lot on the (i) first sample, and
  - (ii) second sample

**MSTE-001** 

4

2+2

### 4. Consider the following payoff table :

| States of      | Courses of Action |                |                |                |  |  |  |  |
|----------------|-------------------|----------------|----------------|----------------|--|--|--|--|
| Nature         | A <sub>1</sub>    | A <sub>2</sub> | A <sub>3</sub> | A <sub>4</sub> |  |  |  |  |
| N <sub>1</sub> | 400               | 900            | 900            | 1000           |  |  |  |  |
| N <sub>2</sub> | 200               | 400            | 700            | - 300          |  |  |  |  |
| N <sub>3</sub> | 600               | 200            | 500            | 700            |  |  |  |  |

Identify the optimum course of action under :

- (a) Optimistic criterion (assume that payoff values represent profits)
- (b) Pessimistic criterion
- (c) Hurwicz criterion
- (d) Regret criterion (assume that payoff values represent losses)

#### OR

(a) A game has the following payoff matrix :

4

|          |                | Player B       |                |                |  |  |
|----------|----------------|----------------|----------------|----------------|--|--|
|          |                | B <sub>1</sub> | B <sub>2</sub> | B <sub>3</sub> |  |  |
| Player A | A <sub>1</sub> | 5              | 7              | 4              |  |  |
|          | A <sub>2</sub> | 4              | 3              | 0              |  |  |
|          | A <sub>3</sub> | 6              | - 1            | 3              |  |  |

Obtain the :

- (i) Optimal strategy for player A,
- (ii) Optimal strategy for player B, and
- (iii) Value of the game. Is the game fair ?

**MSTE-001** 

(b) Solve the two-person zero-sum game having the following payoff matrix for player A :

6

|          |                | Player B                      |    |  |  |
|----------|----------------|-------------------------------|----|--|--|
|          |                | B <sub>1</sub> B <sub>2</sub> |    |  |  |
| Player A | A <sub>1</sub> | -2                            | -1 |  |  |
|          | A <sub>2</sub> | 4                             | -3 |  |  |

5. The failure data for 1000 electronic components 10 are shown in the table given below :

| Operating          |      |       |       |       |       |       |       |       |       |        |
|--------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| time               | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
| (in hours)         |      |       |       |       |       |       |       |       |       |        |
| No. of<br>failures | 207  | 175   | 148   | 120   | 105   | 67    | 50    | 74    | 35    | 19     |
| Tunures            |      |       |       |       |       |       |       |       |       |        |

Estimate :

- (a) Reliability,
- (b) Cumulative failure distribution,
- (c) Failure density, and
- (d) Hazard function

OR

**MSTE-001** 

Evaluate reliability of the system for which the reliability block diagram is shown in the figure given below :



Assume that all components are independent and reliability of each component is given as follows :

 $R_1 = 0.80, R_2 = 0.75, R_3 = 0.50, R_4 = 0.65,$  $R_5 = 0.76, R_6 = 0.60, R_7 = 0.95, R_8 = 0.92$ where R (i = 1, 2, 8) denotes reliability

where  $R_i$  (i=1, 2, ..., 8) denotes reliability of component i.

**MSTE-001**