No. of Printed Pages : $5 \square 1924$

POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Term-End Examination

December, 2015

MST-003 : PROBABILITY THEORY

Time: 3 hours
Maximum Marks : 50
Note:
(i) Attempt all questions.
(ii) Questions no. 2 to 5 have internal choices.
(iii) Use of scientific calculator is allowed.
(iv) Use of Formulae and Table Booklet for PGDAST is allowed.
(v) Symbols have their usual meanings.

1. Which of the following statements are True or False? Give reasons in support of your answer.

$$
5 \times 2=10
$$

(a) Classical definition of probability fails if the cases are not equally likely.
(b) If a coin is tossed twice, then the sample space is ($\mathrm{HH}, \mathrm{HT}, \mathrm{TT}$).
(c) If a fair die is thrown once, then the probability of getting an even number is greater than that of getting an odd number.
(d) If X follows Poisson distribution, then mean of $\mathrm{X}>$ variance of X .
(e) If $\mathrm{X} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$ and $\mathrm{Z}=\frac{\mathrm{X}-\mu}{\sigma}$, then $\mathrm{Z} \sim \mathrm{N}(0, \sqrt{2})$.
2. (a) Find the probability of event A, if
(i) odds in favour of event A are $4: 3$,
(ii) odds against event A are $5: 8$.
(b) If $\mathrm{P}(\mathrm{A})=\frac{3}{5}$, then find
(i) odds in favour of A ,
(ii) odds against the occurrence of event A.
(c) If A, B and C are any three events, write down the expressions for the following in terms of set theory :
(i) only A occurs,
(ii) A and B occur but C does not occur,
(iii) A, B and C , all the three occur,
(iv) at least two occur,
(v) exactly two do not occur,
(vi) none occurs.

OR

(a) A die is rolled. If the outcome is a number greater than 3 , what is the probability that it is a prime number?
(b) A couple has 2 children. What is the probability that both the children are boys, if it is known that
(i) younger child is a boy,
(ii) elder child is a boy,
(iii) at least one of them is a boy?
3. (a) 2 bad articles are mixed with 5 good ones. Find the probability distribution of the number of bad articles, if 2 articles are drawn at random.
(b) The following table represents the joint probability distribution of the discrete random variable (X, Y) :

X	1	2
1	0.1	0.2
2	0.1	0.3
3	0.2	0.1

Find
(i) The marginal distributions,
(ii) The conditional distribution of X given $Y=1$,
(iii) $\mathrm{P}[\mathrm{X}+\mathrm{Y}<4]$.

OR
(a) Let the joint density function of a two-dimensional random variable (X, Y) be given by
$f(x, y)=\left\{\begin{array}{cc}x+y, & 0 \leq x<1 \text { and } 0 \leq y<1 \\ 0, & \text { otherwise }\end{array}\right.$
Find the conditional density function of Y given X .
(b) A player tosses two unbiased coins. He wins $₹ 5$ if 2 heads appear, ₹ 2 if one head appears and ₹ 1 if no head appears. Find the expected value of the amount won by him.
4. (a) If $X \sim B(n, p)$, find p if $n=6$ and $9 \mathrm{P}[\mathrm{X}=4]=\mathrm{P}[\mathrm{X}=2]$.
(b) If the probability that an individual suffers a bad reaction from an injection of a given serum is 0.001 , determine the probability that out of 1500 individuals, exactly 3 individuals suffer from a bad reaction.

OR

(a) A jury of 5 members is drawn at random from a voters' list of 100 persons, out of which 60 are non-graduates and 40 are graduates. What is the probability that the jury will consist of 3 graduates?
(b) Comment on the following:

The mean and variance of geometric distribution are 4 and 3 , respectively.
(c) Find the probability that the third head turns up in the $5^{\text {th }}$ toss of an unbiased coin.
5. (a) Write any five chief characteristics of the normal distribution.
(b) If the random variable X is normally distributed with mean 80 and standard deviation 5, then find the $\mathrm{P}[60 \cdot 5<\mathrm{X}<90$].

OR

(a) Obtain the value of $\mathrm{k}>0$ for which the function given by

$$
f(x)=2 e^{-k x}, x \geq 0
$$

follows an exponential distribution. Hence, find its mean and variance.
(b) Obtain the mean and variance for the beta distribution whose density function is given by

$$
f(x)=\frac{60 x^{2}}{(1+x)^{7}}, 0<x<\infty
$$

