M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)
 Term-End Examination
 December, 2015

MMTE-006 : CRYPTOGRAPHY

Time : 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory. Answer any four of the remaining questions.

1. Which of the following statements are true, and which are false? Justify your answers. $\quad 5 \times 2=10$
(a) The encryption speed in OFB mode of a block cipher can be increased by precomputing the key stream.
(b) Non-repudiation is not required if authentication of the origin by the receiver is possible.
(c) The AKS test for primality is more reliable than the Miller-Rabin test.
(d) The pseudo-random sequence generated by a single LFSR is strongly secure.
(e) There is at least one finite field with fifteen elements.
2. (a) Generate the first 10 terms of the LFSR sequence with characteristic polynomial $x^{5}+x^{3}+1$, with starting values $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=(1,0,1,1,0)$.
(b) Compute $5^{21}(\bmod 41)$ using the repeated squaring algorithm.
(c) Asha and Bano generate a common key by using the Diffie-Hellman protocol for secure communication. Suppose Asha chooses $p=41, \alpha \equiv 6(\bmod 41), x=3$, and Bano chooses $y=5$. Find the value of the common key, showing all the steps.
3. (a) If 00112233445566778899 aa bb cc dd ee ff is the message, and round key =

00050 a Of 04090 e 03
08 0d 0207 Oc $01060 f$, then
(i) apply a shift row transformation of AES on the message;
(ii) apply round key addition on the result of (i) above;
(iii) apply a subbyte transformation on the output of (ii) above, where $\mathrm{S}[\mathrm{i}]=\mathrm{i}+1(\bmod 256)$.
(b) Let $n=2911$ and $\phi(n)=2800$. Factorise n into two primes.
4. (a) In RSA, what is the advantage of choosing an encryption exponent with a low number of ones in its binary representation ? Is it advisable to have a small decryption exponent? Juśtify your answer.
(b) The cipher text EDYW was encrypted using the affine cipher. The plain text starts with HA. Find the complete message.
(c) Find $\mathrm{b}>10$ such that 91 is a pseudoprime to base b.
5. (a) What is Merkle-Damgard strengthening ? Illustrate this method with the string "SCRAMBLEDEGGS", assuming a block size of 64 bits.
(b) Check that $\mathrm{x}^{2}+1 \in \mathrm{~F}_{3}[\mathrm{x}]$ is irreducible. Is it primitive? Justify your answer.
6. (a) Decrypt the Vigenère cipher, OQLTHEQTFBYZOL, where the keyword is "SMART". Is the Vigenère cipher a polyalphabetic or monoalphabetic substitution cipher? Justify your answer.
(b) Compute the multiplicative inverse of $\mathrm{x}^{5}+\mathrm{x}^{3}+1$ in $\mathrm{F}_{2} /\left\langle\mathrm{x}^{8}+\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}+1\right\rangle$.
(c) Factorise 221 using the Fermat factorisation method.2

