No. of Printed Pages: 3

MMTE-005

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

UD954 Term-End Examination

December, 2015

MMTE-005 : CODING THEORY

Time : 2 hours

Maximum Marks : 50 (Weightage : 50%)

Note: Answer any five questions from questions no. 1 to 6. Calculators are **not** allowed.

1. ((a)	Prove that, in a linear code, the minimum								
		distanc weight.		S	the	same	as	the	minimum	3

- (b) State and prove the sphere packing bound. 4
- (c) Find all the primitive elements in \mathbf{F}_{11} .
- 2. (a) Find all the code-words of the code \mathcal{C} with generator matrix

[1	0	0	1	1	
0	0 1	0	0	1.	
0	0	1	1	0	

How many errors can \mathcal{C} detect ? How many can it correct ? 6

(b) Construct a field with 8 elements.

MMTE-005

P.T.O.

4

3

3.

(a) Let C be [15, 7] narrow-sense binary BCH
code of designed distance δ = 5, which has
defining set

 $T = \{1, 2, 3, 4, 6, 8, 9, 12\}.$

Let $\alpha^4 = 1 + \alpha$, where α is primitive 15^{th} root of unity, and generator polynomial of C is

5

3

2

5

 $g(x) = 1 + x^4 + x^6 + x^7 + x^8$. If $y(x) = 1 + x + x^5 + x^6 + x^9 + x^{10}$ is received, find the transmitted code word.

- (b) Define cyclic code and give an example.
- (c) Prove that a BCH code of designed distance δ has minimum weight at least δ .
- 4. (a) Let C be a cyclic code over \mathbf{F}_q with generating idempotent $e(\mathbf{x})$. Prove that the generator polynomial of C is $\mathbf{g}(\mathbf{x}) = \mathbf{gcd} (e(\mathbf{x}), \mathbf{x}^n - 1)$ computed in \mathbf{F}_q [x].
 - (b). Let C be any self-dual [12, 6, 6] ternary code. Prove that the weight enumerator of C is

$$W_C(x, y) = y^{12} + 264x^6y^6 + 440x^9y^3 + 24x^{12}$$
. 5

MMTE-005

- 5. (a) Construct the generating idempotents of the duadic codes of length 11 over \mathbf{F}_3 .
 - (b) Let C be the Z_4 linear code of length 3 with generator matrix

$$\mathbf{G} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{3} \end{bmatrix}.$$

- (i) List the 16 code-words in C.
- (ii) List the 16 code-words in the Gray image of C. 2
- 6. (a) Define a convolutional code and give an example.
 - (b) If a polynomial generator matrix of an (n, k) convolutional code C is basic and reduced, prove that G is canonical.
 - (c) Write the Message Passing Decoding Algorithm.

3

4

3

6

2

1,000

3