M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
December, 2015

MMTE-001: GRAPH THEORY

Time: 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Answer any four questions out of the remaining six numbered 2 to 7 . Calculating devices are not allowed.

1. State whether the following statements are true or false, with a brief justification :
$5 \times 2=10$
(a) The cycle C_{n} is bipartite for every integer $\mathrm{n} \geq 3$.
(b) The complement of a disconnected graph is always connected.
(c) Every Eulerian graph is Hamiltonian.
(d) The chromatic number of $K_{m, n}$ is $\min (m, n)$.
(e) Every simple graph is 4-colourable.
2. (a) Check whether the graphs in the figure below are isomorphic or not. Justify your answer.

(b) If $\delta(\mathrm{G}) \geq 2$ for a graph G , then prove that G contains a cycle.
(c) Define $\alpha^{\prime}(\mathrm{G})$ and $\beta^{\prime}(\mathrm{G})$. Prove that $\alpha^{\prime}(G)+\beta^{\prime}(G)=n(G)$.
3. (a) If G is a simple graph which is self-complementary, then prove that $\operatorname{diam}(G)=3$.
(b) Prove that a simple graph is connected, if and only if it has a spanning tree. Further, show that a simple graph is a tree, if and only if it has exactly one spanning tree.
4. (a) Let $A=\left(A_{i}, \ldots, A_{m}\right)$ be a collection of subsets of a set Y. A System of Distinct Representatives (SDR) for A is a set of distinct elements $a_{i}, \ldots, a_{m} \in Y$ such that $a_{i} \in A_{i}$ for $i \in\{l, \ldots, m\}$. Prove that A has an SDR, if and only if

$$
\left|\bigcup_{i \in S} A_{i}\right| \geq|S| \forall S \subseteq\{1,2, \ldots, m\}
$$

(b) Prove that the minimum number of edges in a K-connected graph on n vertices is $\left\lceil\frac{\mathrm{Kn}}{2}\right\rceil$.
5. (a) If f is a feasible flow and [$\mathrm{S}, \mathrm{T}]$ is a source-sink cut, then prove that the net flow out of S equals the net flow into T.
(b) Show that in a k-critical graph, G, $\delta(G) \geq k-1$.
(c) If G is a simple graph on n vertices, where $\mathrm{n} \geq 3$, and $\delta(\mathrm{G}) \geq \frac{\mathrm{n}}{2}$, then prove that G is Hamiltonian.
6. (a) Draw a graph, G, with a vertex v so that $\chi(\mathrm{G}-v)<\chi(\mathrm{G})$ and $\chi(\overline{\mathrm{G}}-v)<\chi(\overline{\mathrm{G}})$.
(b) Prove that $K_{3,3}$ is non-planar.
(c) Show that the number of vertices of degree 1 in any tree is $1+\frac{1}{2} \sum_{\mathrm{v} \in \mathrm{V}}|\mathrm{d}(\mathrm{v})-2|$, where V is the set of vertices of the tree.
7. (a) If h is a connected planar, simple graph with n vertices and e edges, $\mathrm{n} \geq 3$, with girth 5 , prove that $3 \mathrm{e} \leq 5(\mathrm{n}-2)$. Deduce that the Petersen Graph is not planar.
(b) Show that the sequence $\{1,1,2,2, \ldots, k, k\}$ is graphical, for every $\mathrm{k} \geq 1$.
(c) Let $x y$ be an edge in a simple graph, G. Prove that

$$
\begin{equation*}
\kappa(G-x y) \geq \kappa(G)-1 . \tag{3}
\end{equation*}
$$

