00834

No. of Printed Pages: 4

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination December, 2015

MMT-009 : MATHEMATICAL MODELLING

Time : $1\frac{1}{2}$ hours

Maximum Marks : 25

(Weightage : 70%)

MMT-009

Note: Answer any five questions. Use of calculators is not allowed.

- 1. (a) Explain, with examples, the difference between
 - (i) Static and Dynamic Models,
 - (ii) Deterministic and Stochastic Models.
 - (b) Compare the risk of two securities 1 and 2 whose return distributions are given below:

3

2

Possible Rate of Return for Security		Associated Probability	
1	2	$p_{1j} = p_{2j}$	
0.19	0.09	0.13	
0.17	0.16	0.15	
0.11	0.18	0.42	
0.10	0.11	0.30	

P.T.O.

2. Consider the discrete time population model given by

$$N_{t+1} = \frac{rN_t}{1 + \left(\frac{N_t}{K}\right)^b}, \text{ for a population } N_t,$$

where K is the carrying capacity of the population, r is the intrinsic growth rate and b is a positive parameter. Determine the non-negative steady-state and discuss the linear stability of the model for 0 < r < 1. Also find the first bifurcation value of the parameter r.

3. Do the stability analysis of the following pre-predator model formulated to study the effect of toxicants on the competing species :

$$\frac{dN_1}{dt} = r_1 N_1 - \alpha_1 N_1 N_2 - d_1 C_0 N_1$$
$$\frac{dN_2}{dt} = r_2 N_2 - \alpha_2 N_1 N_2$$
$$\frac{dC_0}{dt} = k_1 P - g_1 C_0 - m_1 C_0$$
$$\frac{dP}{dt} = Q - hP - kPN_1 + gC_0 N_1$$

under the conditions

$$N_1(0) = N_{10}, N_2(0) = N_{20}, C_0(0) = 0, P(0) = P_0 > 0,$$

where $N_1(t)$ = Density of prey population,

MMT-009

5

- $N_2(t) =$ Density of predator population,
- $C_0(t) =$ Concentration of the toxicant in the individual of the prey population,
- P = Constant environmental toxicant concentration,
- Q = The exogenous rate of input of toxicant into the environment,

 r_1 , α_1 , d_1 , r_2 , α_2 , k_1 , g_1 , m_1 , h, k and g are all positive constants.

4. A company has three factories F_1 , F_2 and F_3 that supply to three markets M_1 , M_2 and M_3 . The transportation costs from each factory to each market are given in the table. Capacities a_i 's of the factories and market requirements b_j 's are shown below. Find the minimum transportation cost.

	M ₁	M ₂	M ₃	a _i
F ₁	2	1	3	20
F ₂	1	2	3	30
F ₃	2	1	2	10
bj	10	10	20	40/60

3

P.T.O.

5

5

5. (a) Given a set of securities with portfolio values

$$w_i's = \frac{1}{3}, \frac{2}{3}, \frac{1}{2}, \frac{3}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}$$

Find a feasible set of portfolio of these securities.

- Formulate the model for which **(b)** the reproductive function of the cancer cells in the tumour surface is given bv $\phi(c) = \frac{c-1}{1-2c}, c \neq \frac{1}{2}$ together with initial conditions $c = 20 \times 10^5$ at t = 0. Also find the density of the cancer cells in the tumour's surface area at t = 45 days.
- 6. (a) What are residual plots and box plots? Give an example of each.
 - (b) Let G(t) be the amount of the glucose in the bloodstream of a patient at time t. The glucose is infused into the bloodstream at a constant rate of k gm/min. At the same time, the glucose is converted and removed from the bloodstream at a rate proportional to the amount of glucose present. If the initial concentration of glucose in the bloodstream was G_0 , then find the concentration at any time t. Also find the limiting value of the concentration as $t \rightarrow \infty$.

1,500

3

2

3

2

4