No. of Printed Pages : 8
M.Sc. (MATHEMATICS WITH APPLICATIONS

IN COMPUTER SCIENCE)
M.Sc. (MACS)

Term-End Examination
December, 2015

MMT-008 : PROBABILITY AND STATISTICS

Time: 3 hours
Maximum Marks : 100
(Weightage : 50\%)
Note: Question no. 8 is compulsory. Answer any six questions from questions no. 1 to 7. Use of calculator is not allowed.

1. (a) Consider a closed queuing network with three queues with exponential services. Service rates for these queues are μ_{1}, μ_{2} and μ_{3}. The total number of clients in the queue is $N=3$. Routing probabilities between the queues are defined by the following matrix :

$$
\left[p_{i j}\right]=\left[\begin{array}{ccc}
0 & 0.5 & 0.5 \\
0.5 & 0.5 & 0 \\
0.5 & 0.5 & 0
\end{array}\right]
$$

(i) Draw the queuing system.
(ii) Find the steady state probabilities.
(iii) If $\mu_{1}=\mu_{2}=\mu_{3}=\mu$, then find the average number of customers in steady state and also find the average time spent by the customers in each queue.
(b) A fair die is tossed and its outcome is denoted by X, i.e.
$\mathrm{X} \sim\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6}\end{array}\right)$
After that, X independent fair coins are tossed and the number of heads obtained is denoted by Y.

Find :
(i) $\mathrm{P}[\mathrm{Y}=4]$
(ii) $\mathrm{P}[\mathrm{X}=5 \mid \mathrm{Y}=4]$
(iii) $\mathrm{E}(\mathrm{Y})$
(iv) $\mathrm{E}(\mathrm{XY})$
2. (a) Find the principal components and proportions of total population variance explained by each component when the covariance matrix is given by

$$
\sum=\left[\begin{array}{ll}
5 & 2 \\
2 & 2
\end{array}\right]
$$

MMT-008
(b) Let $\mathrm{X} \sim \mathrm{N}_{4}(\mu, \Sigma)$ with
$\mu=\left[\begin{array}{r}2 \\ 4 \\ -1 \\ 3\end{array}\right]$ and $\Sigma=\left[\begin{array}{rrrr}4 & 2 & -3 & 4 \\ 2 & 4 & 0 & 1 \\ -3 & 0 & 4 & -2 \\ 4 & 1 & -2 & 8\end{array}\right]$.
Let Y and Z be two partitioned subvectors of X such that $Y^{\prime}=\left[X_{1}, X_{2}\right]$ and $Z^{\prime}=\left[X_{3}, X_{4}\right]$.

Find :
(i) $\mathrm{E}(\mathrm{Y} / \mathrm{Z})$
(ii) $\operatorname{Cov}(\mathrm{Y}, \mathrm{Z})$
(iii) $\mathrm{r}_{12.34}$
3. (a) The transition probability matrix P of a Markov chain with states Sunny (S), Cloudy (C) and Rainy (R) in a simple weather model is given below :

	S	C	R
S	[0.7	0.2	$0 \cdot 1$
$\mathbf{P}=\mathbf{C}$	0.2	0.5	$0 \cdot 3$
R	$0 \cdot 1$	0.5	0.4

Also the initial probability distribution of the states is ($0.5 \quad 0.3 \quad 0.2$).
(i) What is the probability that starting from initial day, all the three successive days will be cloudy?
(ii) Obtain the probability distribution of the weather on the second day.
(b) A radioactive source emits particles at a rate of 5 per minute according to Poisson law. Each particle emitted has probability 0.6 of being recorded. What is the probability that in 4 minutes 10 particles will be recorded? What is the mean and variance of the number of particles recorded?
(c) Let the lifetimes X_{1}, X_{2}, \ldots be i.i.d. exponential random variables with parameters $\lambda>0$ and $T>0$. Age replacement policy is to be employed.
(i) Find μ^{T}.
(ii) If the replacement cost $\mathrm{C}_{1}=3$ and extra cost $C_{2}=4$, then find the long run average cost per unit time.
4. (a) Let $\left\{X_{n}, \mathrm{n}=1,2, \ldots\right\}$ be i.i.d. geometric random variables with the probability mass function

$$
P\left(X_{n}=i\right)=(1-p) p^{i-1}, i=1,2,3, \ldots
$$

Find the renewal function of the corresponding renewal process.
(b) Let $\overline{\mathrm{X}}=\left\{\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right\}$ be a random vector and X be the data matrix given below :

$$
X^{\prime}=\left[\begin{array}{lll}
5 & 2 & 5 \\
3 & 4 & 2 \\
4 & 2 & 3
\end{array}\right]
$$

Find :
(i) Variance - Covariance matrix Σ
(ii) Correlation matrix R
5. (a) On the basis of past experience about the sales (X_{1}) and profits (X_{2}) the population mean vector and variance - covariance matrix for the industry was as given below :

$$
\mu=\left[\begin{array}{l}
30 \\
10
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
10 & 5 \\
5 & 4
\end{array}\right]
$$

From a sample of 10 industries the sample mean vector was found as $\bar{X}=\left[\begin{array}{l}33 \\ 7\end{array}\right]$. Test at 5% level of significance whether the sample confirms the truthfulness of the industry claim of population mean vector. [You may like to use the following values : $\left.x_{2,0.05}^{2}=5.99, x_{3,0.05}^{2}=7.81\right]$
(b) Suppose $\mathrm{X}=\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)^{\prime}$ be distributed as a trivariate normal distribution, $\mathrm{N}_{3}(\mu, \Sigma)$, where

$$
\mu=(2,1,3)^{\prime}, \Sigma=\left[\begin{array}{lll}
4 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right] .
$$

Find the distribution of

$$
\mathrm{u}=\left[\begin{array}{c}
\mathrm{X}_{1}-\mathrm{X}_{3} \\
\mathrm{X}_{1}+\mathrm{X}_{3}-2 \mathrm{X}_{2}
\end{array}\right]
$$

6. (a) In a Branching process, the offspring distribution is given as

$$
\begin{aligned}
P_{k}={ }^{n} C_{k} p^{k} q^{n-k}, k & =0,1,2, \ldots, n \\
q & =1-p, \\
0 & <p<1 .
\end{aligned}
$$

Find the probability of ultimate extinction of the process given that
(i) $\mathrm{n}=2, \mathrm{p}=0 \cdot 2$,
(ii) $\mathrm{n}=2, \mathrm{p}=0.8$.
(b) If $\{\mathrm{X}(\mathrm{t})$; $\mathrm{t}>0\}$ is a Poisson process with rate λ and S_{m} denotes the duration from start to the occurrence of $\mathrm{m}^{\text {th }}$ event, obtain the distribution of S_{m}. If $\lambda=1$ per hour, then find the probability that the duration from start to the occurrence of third event will be less than 2 hours.
7. (a) Suppose that the random variables X and Y have the following joint p.d.f. :

$$
f(x, y)=\left\{\begin{array}{cc}
x+y ; & 0<x<1,0<y<1 \\
0 ; & \text { otherwise }
\end{array}\right.
$$

(i) Find the conditional p.d.f. of X given $\mathrm{Y}=\mathrm{y}$.
(ii) Check independence of X and Y .
(iii) Compute $\mathrm{P}\left[\left.0<\mathrm{X}<\frac{1}{3} \right\rvert\, \mathrm{Y}=\frac{1}{2}\right]$.
(b) Let X denote the data matrix for a random sample of size 3 from a bivariate normal population, where

$$
X=\left[\begin{array}{cc}
6 & 9 \\
10 & 6 \\
8 & 3
\end{array}\right]
$$

Test the hypothesis $\mathrm{H}_{0}: \mu=(9,5)^{\prime}$ at 5% level of significance. [You may like to use the following values : $\mathrm{F}_{2,1,0.05}=18.51$, $\mathrm{F}_{3,2,0.05}=9.55$]
8. State whether the following statements are true or false. Give a short proof or counter-example in support of your answer.
(a) If $\mathrm{f}_{\mathrm{ij}}<1$ and $\mathrm{f}_{\mathrm{ji}}<1$, then i and j do not intercommunicate.
(b) If $\mathrm{P}(\mathrm{s})$ is the generating function of the random variable X, then the generating function of $2 \mathrm{X}+1$ is $2 \mathrm{P}(\mathrm{s})+1$.
(c) If $\{\mathrm{n}(\mathrm{t}), \mathrm{t}>0\}$ is a Poisson process with rate λ, then $E[n(t+s)-n(s)]=\lambda t$.
(d) The quadratic form $Q=2 x_{1}^{2}-3 x_{2}^{2}-6 x_{1} x_{2}$ is negative definite.
(e) If $X \sim N_{p}(\mu, \Sigma)$, then the linear combinations of the components of X are normally distributed.

