# M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) <br> M.Sc. (MACS) 

Term-End Examination
December, 2015

## MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Answer any four questions out of questions no. 2 to 7. Use of calculators is not allowed.

1. State whether the following statements are true or false. Justify your answers with the help of a short proof or a counter-example. $5 \times 2=10$
(a) The differential equation $\frac{d y}{d x}=x y^{2}$, satisfies the Lipschitz condition on any strip $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b},-\infty<\mathrm{y}<\infty$.
(b) Inverse Laplace transform of $\cot ^{-1} \mathrm{~s}$, is

$$
\mathcal{L}^{-1}\left(\cot ^{-1} s\right)=\frac{\sin t}{t} .
$$

(c) The interval of absolute stability of the method

$$
\begin{gathered}
y_{n+1}=y_{n}+\frac{1}{2}\left(k_{1}+k_{2}\right) \\
k_{1}=h f\left(x_{n}, y_{n}\right), k_{2}=h f\left(x_{n}+h, y_{n}+k_{1}\right)
\end{gathered}
$$

for the solution of the initial value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$, is $]-2,0[$.
(d) The explicit scheme

$$
u_{i}^{n+1}=u_{i}^{n}+\lambda\left[u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right],
$$

$\lambda=\mathrm{k} / \mathrm{h}^{2}$ for solving the parabolic equation $u_{t}=u_{x x}$ is stable for $\lambda<1$.
(e) $\mathrm{x}=0$ is an irregular singular point of the differential equation

$$
x y^{\prime \prime}+\sin (2 x) y^{\prime}+x e^{3 x} y=0 .
$$

2. (a) Prove the recurrence relation of the Lagrange polynomials

$$
\begin{array}{r}
\left(1-x^{2}\right) P_{n}^{\prime}(x)=(n+1)\left[x P_{n}(x)-P_{n+1}(x)\right], \\
n=0,1,2, \ldots .
\end{array}
$$

$$
4
$$

(b) The heat conduction equation $u_{t}=u_{x x}$ is approximated by

$$
u_{m}^{n+1}=u_{m}^{n-1}+2 \lambda\left(u_{m-1}^{n}-2 u_{m}^{n}+u_{m+1}^{n}\right), \lambda=k / h^{2} .
$$

(i) Find the truncation error of the method.
(ii) Investigate the stability of the method.
3. (a) Find the series solution about $x=0$, of the differential equation

$$
x y^{\prime \prime}+(1-2 x) y^{\prime}+(x-1) y=0 .
$$

(b) Reduce the second order initial value problem

$$
\begin{aligned}
& \mathrm{y}^{\prime \prime}=\mathrm{y}^{\prime}+3 \\
& \mathrm{y}(0)=1 \\
& \mathrm{y}^{\prime}(0)=\sqrt{3}
\end{aligned}
$$

to a system of first order initial value problems. Hence, find $y(0 \cdot 1), y^{\prime}(0 \cdot 1)$, using Taylor series method of second order with $\mathrm{h}=0.1$.
4. (a) Show that

$$
\begin{equation*}
J_{5 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{1}{x^{2}}\left(3-x^{2}\right) \sin x-\frac{3}{x} \cos x\right) . \tag{2}
\end{equation*}
$$

(b) Show that

$$
\int_{-1}^{1} x P_{n}(x) P_{n-1}(x) d x=\frac{2 n}{4 n^{2}-1}
$$

where $P_{n}(x)$ is $n^{\text {th }}$ degree Legendre polynomial.
(c) $A$ region $R$ is divided into rectangular elements, whose sides are parallel to $x$ and $y$ axes. An element has corners $P\left(x_{i}, y_{i}\right)$, $Q\left(x_{j}, y_{i}\right), R\left(x_{j}, y_{m}\right)$ and $S\left(x_{i}, y_{m}\right)$. Derive an interpolating polynomial $u(x, y)$ that can be used in the element PQRS.
5. (a) Using the Fourier transform, solve the initial boundary value problem

$$
\begin{align*}
& \frac{1}{\mathbf{c}^{2}} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}},-\infty<x<\infty, t>0 \\
& u(x, 0)=f(x) \\
& \left.\frac{\partial u}{\partial t}\right|_{t=0}=0 \tag{5}
\end{align*}
$$

(b) Solve the boundary value problem using the finite difference method with second order approximations with $h=1 / 2$ :

$$
\begin{aligned}
& \mathrm{y}^{\prime \prime}+5 \mathrm{y}^{\prime}+4 \mathrm{y}=2 \\
& \mathrm{y}(0)+\mathrm{y}^{\prime}(0)=1, \mathrm{y}(1)=4
\end{aligned}
$$

6. (a) Using Green's function method, solve the boundary value problem

$$
\begin{equation*}
y^{\prime \prime}+y=x^{2}, y(0)=0=y\left(\frac{\pi}{2}\right) \tag{5}
\end{equation*}
$$

(b) Determine the interval of absolute stability for the method

$$
y_{i+1}=\frac{9}{8} y_{i}-\frac{1}{8} y_{i-2}+\frac{3 h}{8}\left(y_{i+1}^{\prime}+2 y_{i}^{\prime}-y_{i-1}^{\prime}\right)
$$

when applied to the test equation
$\mathrm{y}^{\prime}=\lambda \mathrm{y}, \lambda<0$.
7. (a) Using Laplace transforms, solve the initial boundary value problem

$$
\begin{aligned}
& u_{t t}=u_{x x}, 0<x<\pi, t>0 \\
& u(x, 0)=0, \frac{\partial u}{\partial t}=\sin x \text { at } t=0 \\
& u(0, t)=0, u(\pi, t)=0, t>0
\end{aligned}
$$

(b) Using the Crank-Nicolson method, integrate up to 2 time levels for the solution of the initial boundary value problem

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0 \leq x \leq 1 \\
& u(x, 0)=\sin (2 \pi x) \\
& u(0, t)=0=u(1, t)
\end{aligned}
$$

with $h=1 / 3$ and $\lambda=1 / 6$.

