No. of Printed Pages: 4

MMT-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

00483

December, 2015

MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 hours

Maximum Marks : 50 (Weightage : 70%)

Note : Question no. 1 is **compulsory**. Attempt any **four** of the remaining questions.

- 1. State whether the following statements are true or false. Give a brief justification, with a short proof or a counter-example : $5 \times 2=10$
 - (a) If X is a normed linear space, $x, y \in X$ and ||x|| = 1 = ||y||, then ||x + y|| < 2.
 - (b) The map $l' \rightarrow l'$, $(\mathbf{x}_n) \mapsto ((-1)^n \mathbf{x}_n)$ is open.
 - (c) The space $(\mathbf{R}^2, \|\cdot\|_{\infty})$ is not reflexive.
 - (d) The linear operator $A : \mathbb{C}^2 \to \mathbb{C}^2$, given by $A(z_1, z_2) = (z_1, -z_2)$ is a normal operator.
 - (e) C'[0, 1] is not complete under sup norm.

2. (a) On \mathbb{R}^3 , prove that $||x|| = |x_1| + \sqrt{x_2^2 + x_3^2}$ defines a norm. Find the constants $\alpha, \beta > 0$ such that $\alpha ||x||_2 \le ||x|| \le \beta ||x||_2, x \in \mathbb{R}^3$. 5

MMT-006

P.T.O.

- (b) (i) Define the spectrum and eigen spectrum for a bounded linear operator defined over a Banach space.
 - (ii) Let $X = C_0$ and $A : X \to X$ be the diagonal operator defined as follows :

If $\mathbf{x} = {\mathbf{x}_i}$, then

$$(\mathbf{A}\mathbf{x}) = \left\{\frac{\mathbf{x}_j}{j}, j \in \mathbf{N}, \mathbf{x} \in \mathbf{X}\right\}.$$

Show that

$$\sigma_{e}\left(A\right) = \left\{\frac{1}{j} \mid j \in \mathbf{N}\right\}.$$

- 3. (a) Let X be a real normed linear space and let Y be a proper, closed, linear subspace of X. Show that, for any $x_0 \in X \setminus Y$, there exists a bounded linear functional $f : X \to \mathbf{R}$ such that f is 0 on Y and $f(x_0) = 1$.
 - (b) Define the transpose A' of a bounded linear operator A and prove that || A' || = || A ||.
 - (c) If A is a positive operator on a Hilbert space, show that I + 2A is invertible.
- **4.** (a) Let A be an operator on $l^2(\mathbb{C})$ defined as follows :

If
$$(\mathbf{x}_n) \in l^2(\mathbf{C})$$
, $A\mathbf{x} = (e^{in} \mathbf{x}_n)$.

Show that A is a unitary operator.

MMT-006

5

3

3

4

3

(b) If M and N are closed linear subspaces of a Hilbert space, show that

$$\mathbf{M} \cap \mathbf{N} = (\mathbf{M}^{\perp} + \mathbf{N}^{\perp})^{\perp}.$$

- (c) State closed graph theorem. Show that the theorem may not hold, if the normed linear spaces involved are not Banach spaces.
- 5. (a) Let X be a Banach space and Y be a normed linear space. If A_n , $A \in BL(X,Y)$ and $A_n x \to Ax$ for all x, then show that the convergence is uniform on any totally bounded set.

$$\mathbf{M} = \{ \mathbf{f} \in \mathbf{L}^2 [0, 1] : \int_{0}^{1} \mathbf{f}(t) \, dt = 0 \}$$

is a closed linear subspace of L^2 [0, 1].

(ii) Show that
$$P(f) = f - \int_{0}^{1} f(t) dt$$
 is a

projection of L^2 [0, 1] on M.

MMT-006

P.T.O.

6

3

4

4

- 6. (a) Let T be a linear operator on a normed linear space X. Show that, if T is continuous at 0, it is continuous on X. Is T uniformly continuous on X ? Justify your answer.
 - (b) Find the norm of the operator A defined on*l'* as follows :

If
$$\mathbf{x} = \mathbf{x}_n \in l'$$
, $A\mathbf{x} = \frac{\mathbf{x}_n}{2n}$.

- (c) Give an example, with justification, of an orthonormal sequence on l^2 . Further, show that if $\{l_n\}$ is an orthonormal sequence on a Hilbert space and α_n are scalars such that $\Sigma |\alpha_n|^2 < \infty$, $\Sigma \alpha_n e_n$ is convergent.
- 7. (a) Prove that a normed linear space is separable, if its dual is separable.
 - (b) Let A be a bounded linear operator on a Hilbert space. Show that if R(A) is closed, then so is $R(A^*)$.
 - (c) Give an example of a Banach space that is not a Hilbert space.

4

5

3

2

4

2

4