01194

No. of Printed Pages: 3

MMT-005

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2015

MMT-005 : COMPLEX ANALYSIS

Time : $1\frac{1}{2}$ hours

Maximum Marks : 25

- Note: Question no. 1 is compulsory. Attempt any three questions from questions no. 2 to 5. Use of calculator is **not** allowed.
- 1. State giving reasons whether the following statements are *true* or *false*: $5\times 2=10$
 - (a) The union of two open connected sets is an open connected set.
 - (b) $\int_{C} \frac{7}{2z-3} dz = 0$, where C is the unit circle

centred at origin.

(c) $f(z) = e^{i|z|}$ is an entire function.

MMT-005

P.T.O.

- (d) The power series $\sum_{n=1}^{\infty} \frac{1}{n^2} z^n$ converges on the closed unit disc $D = \{ z : |z| \le 1 \}.$
- (e) Mapping $f(z) = e^z \sin z$ is conformal at all the points of the complex plane.
- 2. (a) Show that the function

$$f(z) = \frac{\overline{z}}{|z|}, z \neq 0$$

 $\mathbf{f}(\mathbf{0}) = \mathbf{0}$

is not continuous at z = 0.

- (b) Show that $u(x, y) = y + e^x \cos y$ is a harmonic function. Find its harmonic conjugate and the analytic function f(z)whose real part is u.
- 3. (a) State the maximum modulus principle and use it to find the maximum modulus of f(z) = 2z + 5i on the closed circular region defined by $|z| \le 2$. $2\frac{1}{2}$
 - (b) Evaluate

$$\int_{C} \frac{ze^{z}}{2z^{2}-3z-2} dz,$$

where C is $\{ z : |z - 1| = 2 \}$.

2

3

 $2\frac{1}{2}$

4. (a) Locate the singularities of the following function and determine their type :

$$\mathbf{f}(\mathbf{z}) = (\mathbf{z} - 1)^2 \sin\left(\frac{1}{\mathbf{z} - 1}\right).$$

(b) If f(z) is an entire function such that $|f(z)| \le 5 |z|$ for all z, then show that f(z) = az for some constant a.

5. Evaluate
$$\int_{0}^{1} \frac{1}{\left(x^2+4\right)^2} \, \mathrm{d}x \, .$$

.

2

3

5