ロロG54

No. of Printed Pages : 5
MMT-004

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination
December, 2015

MMT-004 : REAL ANALYSIS

Time : 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Question no. 1 is compulsory. Attempt any four questions from questions no. 2 to 7. Calculators are not allowed.

1. State whether the following statements are True or False. Give reasons for your answer.
(a) Continuous image of a Cauchy sequence is a Cauchy sequence.
(b) Every connected metric space is path connected.
(c) The function $\mathrm{f}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by
$f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$ is invertible.
(d) The projection map defined on ($\left.\mathbf{R}^{2}, \mathrm{~d}\right)$, where d is the usual metric, is continuous.
(e) Every Lebesgue integrable function is Riemann integrable.
2. (a) Let $\mathrm{X}=\mathrm{C}[0,1]$. For f, $\mathrm{g} \in \mathrm{C}[0,1]$ define

$$
\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathbf{R} \text { by }
$$

$d(f, g)=\int_{0}^{1}|f(t)-g(t)| d t$, where the
integral is the Riemann integral. Show that d is a metric on X. Find $d(f, g)$, where $\mathrm{f}(\mathrm{x})=2 \mathrm{x}$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2}, \mathrm{x} \in[0,1]$.
(b) Show that every compact set in a metric space is closed and bounded. Is the converse true? Justify your answer.
3. (a) Find the directional derivative of the function $\mathrm{f}: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ defined by
$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})=\left(\mathrm{x}^{2} \mathrm{y}, \mathrm{xyz}, \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{zw}^{2}\right)$ at
$\mathrm{a}=(1,2,-1,-2)$ in the direction

$$
V=(0,1,2,-2) .
$$

(b) Show that the outer measure of a countable set is zero. Also compute $\mathrm{m}^{*}(\mathbf{R}-\mathbf{Q})$, where \mathbf{Q} is the set of all rational numbers.
(c) Find the Fourier series for the function

$$
f(t)=\left\{\begin{array}{cc}
-6-t, & -6 \leq t \leq-3 \tag{3}\\
t, & -3 \leq t \leq 3 \\
6-t, & 3 \leq t \leq 6
\end{array}\right.
$$

4. (a) Find the extreme values of the function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}
$$

subject to the constraint

$$
\begin{aligned}
& 4 x_{1}+x_{2}^{2}+2 x_{3}=14, \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

(b) Let (X, d) be a metric space, and A be the subset of X. Show that
(i) $\overline{\mathrm{A}}=$ int $\mathrm{A} \cup$ bdy A .
(ii) A is closed, if and only if $\mathrm{A} \geq$ bdy (A).

3
(c) State a sufficient condition for which the convolution integral of two Lebesgue integrable functions exists for all $\mathbf{x} \in \mathbf{R}$. Show that for the following functions, the convolution integral does not exist :

$$
\begin{aligned}
& f(t)= \begin{cases}\frac{1}{\sqrt{t}}, & \text { if } 0<t<1 \\
0, & \text { if } t \leq 0 \text { or } t \geq 1\end{cases} \\
& g(t)=\left\{\begin{array}{cc}
\frac{1}{\sqrt{1-t}}, & \text { if } 0<t<1 \\
0, & \text { if } t \leq 0 \text { or } t \geq 1
\end{array}\right.
\end{aligned}
$$

5. (a) Let $h(t)=e^{-2 t} u(t)$. Then find the system response to the input function

$$
\begin{equation*}
f(t)=\sum_{k=-2}^{2}\left(\frac{1}{2}\right)^{k} e^{i 3 k t} \tag{3}
\end{equation*}
$$

(b) Let (X, d) be a metric space and $\mathrm{a} \in \mathrm{X}$ be a fixed point of X . Show that the function $\mathrm{f}_{\mathrm{a}}: \mathrm{X} \rightarrow \mathbf{R}$ given by $\mathrm{f}_{\mathrm{a}}(\mathrm{x})=\mathrm{d}(\mathrm{a}, \mathrm{x})$ is uniformly continuous on X.
(c) Expand the function
$\mathrm{f}(\mathrm{x})=\mathrm{x}$, if $0 \leq \mathrm{x} \leq \pi$ as a Fourier sine series.
6. (a) State the implicit function theorem for \mathbf{R}^{3}. Let $\mathrm{f}=\mathbf{R}^{3} \rightarrow \mathbf{R}$ defined by

$$
f(x, y, z)=x^{2}+y^{3}-x y \sin z
$$

Show that the equation $f(x, y, z)=0$ defines a unique continuously differentiable function g in a neighbourhood of the point $(1,-1,0)$ such that $g(1,-1)=0$.
(b) Let $\left(\mathrm{X}, \mathrm{d}_{1}\right)$ and $\left(\mathrm{Y}, \mathrm{d}_{2}\right)$ be metric spaces and $\mathrm{f}: \mathrm{X} \xrightarrow{\text { onto }} \mathrm{Y}$ be a continuous mapping. If X is connected, then show that Y is connected.
(c) Define a time invariant system. Check whether the system $\mathbf{R}: \mathrm{f} \rightarrow \mathrm{g}$ given by $g(t)=(\mathbf{R f})(t)=\int_{-\infty}^{t} f(c) d c, f \in L^{\prime}(\mathbf{R})$ is a time
invariant system.
7. (a) State Baire Category theorem and use it to check whether \mathbf{Q} with usual metric is complete.
(b) Use the Dominated Convergence theorem to find $\lim _{n \rightarrow \infty} \int_{1}^{\infty} f_{n}(x) d x$, where $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$.
(c) Show that in a metric space, a finite intersection of open sets is open. Give an example to show that an arbitrary intersection of open sets may not be open.

