00165

No. of Printed Pages: 4

MMT-003

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2015

MMT-003 : ALGEBRA

Time : 2 hours

Maximum Marks : 50 (Weightage : 70%)

- Note: Question no. 1 is compulsory. Answer any four questions from questions no. 2 to 6. Calculators are not allowed.
- 1. State, with reasons, whether the following statements are *True* or *False* : $5\times 2=10$
 - (a) Any subgroup $H \subset G$ of a group G is the kernel of a suitable group homomorphism $\phi: G \to G_1$.
 - (b) If m > 1, n > 1 are natural numbers with m > n, there is a group G of order m and a set S with n elements such that G operates transitively on S.

- (c) For every n ∈ N, n > 2, there are infinitely many irreducible polynomials of degree n over Q.
- $\begin{array}{lll} (d) & Let \ R_1, \ R_2: G \rightarrow GL_n \left({\bf R} \right) \ be \ two \ irreducible \\ representations \ of \ the \ finite \ group \ G. \ Then, \\ their \ characters \ \chi_{R_1} \ and \ \chi_{R_2} \ are \\ orthogonal \ only \ if \ R_1 \ and \ R_2 \ are \\ inequivalent. \end{array}$
- (e) The fields $\mathbf{Q}(\pi)$ and $\mathbf{Q}(\pi^2)$ are isomorphic.
- **2.** (a) Solve the set of congruences

 $x \equiv 2 \pmod{5}$ $2x \equiv 3 \pmod{7}$ $x \equiv 4 \pmod{11}$

simultaneously.

(b) Show that $L = \{x y^{2n} | n \ge 0\}$ is a regular language.

5

2

3

3

- (c) Let α be the real cube root of 2 and let β be another (complex) root of $X^3 - 2 = 0$. Show that the fields $\mathbf{Q}(\alpha)$ and $\mathbf{Q}(\beta)$ are isomorphic.

2

- (b) Calculate the Legendre Symbol $\left(\frac{15}{71}\right)$.
- (c) (i) Does $X^p X$ have a multiple root over Z_p ?
 - (ii) Let p be an odd prime and $f(X) = X^{p} + 1$. Then, show that all roots of f over Z_{p} are multiple roots.
- 4. (a) Check whether there is a group of order 12 with class equation 1 + 2 + 4 + 5.
 - (b) Prove that the subgroup SO_2 of SU_2 is conjugate to the subgroup T of diagonal vectors.
 - (c) Show that $\cos \frac{\pi}{8}$ is an algebraic number.
- 5. (a) Let G be an abelian group of order n and suppose p is a prime such that p^k | n and p^{k+1} ∤ n. Let H be the Sylow p-group of G and m = n/p^k. Show that, for any a ∈ G, a^m ∈ H.
 - (b) Show that any field extension of degree 2 is normal.
 - (c) If G is a group of order n, then show that the number of inequivalent irreducible representations of G is at most n.

MMT-003

3

4

2

4

4

4

3

3

3

6. (a) Find the elementary divisors of the group

 $\mathbf{Z}_4\times \mathbf{Z}_6\times \mathbf{Z}_{21}\times \mathbf{Z}_{35}.$

 (b) Determine the last row of the following character table of a group G of order 12 which has 4 conjugacy classes :

	1	3	4	4	
	x ₁ .	x	x ₃	x ₄	_
χ ₁	1	1	1	1	
χ_2	1	1	ω^2	ω	
χ ₃	1	1	ω	ω2	
χ ₄	-	-	-	-	

(c) Show that
$$Q(\sqrt{3} + \sqrt{7}) = Q(\sqrt{3}, \sqrt{7})$$
.

1,500

MMT-003

4

3

2

5