$$
\square 1394
$$

No. of Printed Pages : 3
MMT-002

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination
December, 2015

MMT-002 : LINEAR ALGEBRA

Time: $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 70\%)
Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4 . Use of calculator is not allowed.

1. (a) Let V be the vector space of polynomials of degree at most 2 with real coefficients. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathbf{R}^{3}$ be a linear transformation
defined by $T f(x)=\left[\begin{array}{l}f(-1) \\ f(0) \\ f(1)\end{array}\right]$.
Find the matrix of T relative to the basis $\left\{1, x, x^{2}\right\}$ of V and the standard basis of \mathbf{R}^{3}.
(b) Find the quadratic polynomial which best fits the points $(-1,0),(0,2),(1,1)$ and $(2,-1)$.
2. (a) Find the Jordan form of A, where
$A=\left[\begin{array}{cccc}1 & 1 & -2 & 0 \\ 2 & 1 & 0 & 2 \\ 1 & 0 & 1 & 1 \\ 0 & -1 & 2 & 1\end{array}\right]$.

You are given that $(x-1)^{4}$ is a characteristic polynomial of A.
(b) Consider the predator-prey system given by

$$
\left[\begin{array}{l}
x_{k+1} \\
y_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
0.6 & 0.5 \\
-0.16 & 1.2
\end{array}\right]\left[\begin{array}{l}
x_{k} \\
y_{k}
\end{array}\right]
$$

What is the long term behaviour of $\left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]$?
3. Find the singular value decomposition for the

$$
\text { matrix } A=\left[\begin{array}{cc}
1 & 1 \\
0 & 1 \\
-1 & 1
\end{array}\right]
$$

4. (a) Solve the system of differential equations

$$
\frac{d y(t)}{d t}=\operatorname{Ay}(t) \text { with } y(t)=\left[\begin{array}{l}
1 \\
1
\end{array}\right],
$$

$$
\text { where } A=\left[\begin{array}{ll}
-1 & 4 \\
-1 & 3
\end{array}\right]
$$

(b) Check whether the matrix

$$
\left[\begin{array}{ccc}
7 & 0 & 24 \\
4 & 1 & 16 \\
-2 & 0 & -7
\end{array}\right] \text { is diagonalisable. }
$$

5. Which of the following statements are true and which are false ? Justify your answer. $\quad 5 \times 2=10$
(a) For any normal operator T,

$$
\operatorname{ker} T=\operatorname{ker} \mathrm{T}^{*} \text {. }
$$

(b) A matrix has a unique generalized inverse.
(c) Up to similarity, there is a unique matrix with characteristic polynomial $(x-1)^{4}$ and minimal polynomial $(x-1)^{2}$.
(d) If A is an $\mathrm{n} \times \mathrm{n}$ matrix, then $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{det}(A)}$.
(e) Product of two unitary matrices need not be unitary.

