01384

No. of Printed Pages: 3

MMT-002

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2015

MMT-002 : LINEAR ALGEBRA

Time : $1\frac{1}{2}$ hours

Maximum Marks : 25

(Weightage : 70%)

- Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Use of calculator is **not** allowed.
- 1. (a) Let V be the vector space of polynomials of degree at most 2 with real coefficients. Let $T : V \rightarrow \mathbb{R}^3$ be a linear transformation defined by $T f(x) = \begin{bmatrix} f(-1) \\ f(0) \\ f(1) \end{bmatrix}$.

Find the matrix of T relative to the basis $\{1, x, x^2\}$ of V and the standard basis of \mathbb{R}^3 .

(b) Find the quadratic polynomial which best fits the points (-1, 0), (0, 2), (1, 1) and (2, -1). 3

MMT-002

P.T.O.

2

2.

(a) Find the Jordan form of A, where

 $\mathbf{A} = \begin{bmatrix} 1 & 1 & -2 & 0 \\ 2 & 1 & 0 & 2 \\ 1 & 0 & 1 & 1 \\ 0 & -1 & 2 & 1 \end{bmatrix}.$

You are given that $(x-1)^4$ is a characteristic polynomial of A.

(b) Consider the predator-prey system given by $\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} 0.6 & 0.5 \\ -0.16 & 1.2 \end{bmatrix} \begin{bmatrix} x_k \\ y_k \end{bmatrix}.$ What is the long term behaviour of $\begin{bmatrix} x_k \\ y_k \end{bmatrix}?$

3. Find the singular value decomposition for the matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$.

4. (a) Solve the system of differential equations

$$\frac{dy(t)}{dt} = Ay(t) \text{ with } y(t) = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

where
$$A = \begin{bmatrix} -1 & 4 \\ -1 & 3 \end{bmatrix}$$
.

MMT-002

2

5

2

3

(b) Check whether the matrix

7	0	24		
4	1	16	is diagonalisable.	2
2	0	-7		

5. Which of the following statements are *true* and which are *false*? Justify your answer. $5 \times 2=10$

(a) For any normal operator T,

ker $T = ker T^*$.

- (b) A matrix has a unique generalized inverse.
- (c) Up to similarity, there is a unique matrix with characteristic polynomial $(x 1)^4$ and minimal polynomial $(x 1)^2$.
- (d) If A is an $n \times n$ matrix, then det (e^A) = e^{det (A)}.
- (e) Product of two unitary matrices need not be unitary.