M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)
00.35 .3

Term-End Practical Examination
December, 2015

MMT-008(P) : PROBABILITY AND STATISTICS
Time : $1 \frac{1}{2}$ hours
Maximum Marks : 40

Note: (i) There are two questions in this paper worth 30 marks. Both the questions are compulsory.
(ii) Remaining 10 marks are for the viva-voce.
(iii) All the symbols used have their usual meaning.

1. Consider $\mathrm{Y}=\left[\begin{array}{lll}\mathrm{y}_{1} & \mathrm{y}_{2} & \mathrm{y}_{3}\end{array}\right]^{\prime}$ having $\mathrm{N}_{3}(\mu, \Sigma)$, where

$$
\mu=\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right] \text { and } \Sigma=\left[\begin{array}{ccc}
9 & 0 & 2 \\
0 & 4 & 0 \\
2 & 0 & 6
\end{array}\right]
$$

Write a program in ' C ' language to find the marginal distribution of y_{1}, y_{2} and y_{3}. Also, extend this program to find the conditional distribution of y_{1}, given y_{2} and y_{3}.
2. Write a program in ' C ' language that checks whether a quadratic form in three variables is positive definite or not. It should do the following :
(i) Read the coefficients of the quadratic form.
(ii) Print the matrix corresponding to the quadratic form.
(iii) Check whether the quadratic form is positive definite or not and print the result.

