M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Practical Examination

December, 2015

MMT-007(P) : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : $1 \frac{1}{2}$ hours Maximum Marks : 40

Note: (i) There are two questions in this paper, totalling 30 marks.
(ii) Answer both of them.
(iii) Remaining 10 marks are for the viva-voce.

1. Write a program in ' C ' language to solve the boundary value problem

$$
\begin{aligned}
& \mathrm{y}^{\prime \prime}=2 \mathrm{y}-\mathrm{y}^{\prime} \\
& \mathrm{y}^{\prime}(0)=3, \mathrm{y}^{\prime}(1)=\mathrm{e}+\frac{2}{\mathrm{e}}
\end{aligned}
$$

using the shooting method. Use the Taylor series method

$$
\begin{aligned}
& y_{i+1}=y_{i}+h y_{i}^{\prime}+\frac{h^{2}}{2} y_{i}^{\prime \prime}+\frac{h^{3}}{6} y_{i}^{\prime \prime \prime} \\
& y_{i+1}^{\prime}=y_{i}^{\prime}+h y_{i}^{\prime \prime}+\frac{h^{2}}{2} y_{i}^{\prime \prime \prime}
\end{aligned}
$$

with $h=0.25$ to solve the resulting initial value problems.
2. Write a program in ' C ' language to find the solution of $\nabla^{2} u=x^{2}+y^{2}$ in R subject to the given R and boundary conditions, using the five-point difference formula, R : a triangle $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq x+y \leq 1 . u(x, y)=x-y$ on the boundary of the triangle. Assume the step length $h=\frac{1}{3}$.

