BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination

December, 2015

PHYSICS

PHE-07 : ELECTRIC AND MAGNETIC PHENOMENA

Time : 2 hours
Maximum Marks : 50

Note: All questions are compulsory. Marks allotted for each question are indicated against it. You may use log tables or calculators. Symbols have their usual meanings. Values of the physical constants are given at the end.

1. Answer any five parts : $5 \times 3=15$
(a) An electric field given by $\vec{E}=6 \hat{i}+3 \hat{j}+4 \hat{k}$ acts in a region of space. Calculate the electric flux due to this electric field through the surface of area $0.1 \mathrm{~m}^{2}$ lying in the x-y plane.
(b) Show that the work done by the electric field around a closed path is zero.
(c) Show that the energy per unit volume stored in the electrostatic field (E) of a parallel-plate capacitor with free space as the intervening medium is given by

$$
\mathrm{U}=\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}
$$

(d) A long solenoid of length l, area of cross-section A and having n_{1} turns has wound around its centre a small coil having n_{2} turns. Calculate the mutual inductance between the solenoid and the coil.
(e) A magnetic material placed in an external magnetic field has a magnetization of $3300 \mathrm{Am}^{-1}$ and flux density of 0.0044 T . Calculate the magnetizing field, H .
(f) State Gauss's law for magnetism. Discuss the physical meaning of this law.
(g) Three charges $-4 q, q$ and $2 q$ are situated on the vertices of an equilateral triangle of side a. Calculate the electrostatic potential energy of this system of charges, when $\mathrm{q}=2 \times 10^{-5} \mathrm{C}$ and $\mathrm{a}=10 \mathrm{~cm}$.
(h) Show that the energy expended in establishing a current I in a coil of self-inductance L is $\frac{1}{2} \mathrm{LI}^{2}$.
2. Answer any five parts :
(a) Establish the relation $\nabla \times \overrightarrow{\mathrm{E}}=-\frac{\overrightarrow{\mathrm{B}}}{\partial \mathrm{t}}$ where the symbols have their usual meanings.
(b) Starting from Maxwell's equations for electromagnetic field, obtain the wave equation for the electric field in a homogeneous and isotropic dielectric medium.
(c) An electron having velocity $3 \times 10^{7} \mathrm{~ms}^{-1}$ enters a magnetic field of magnitude $2.0 \times 10^{-3} \mathrm{~T}$ at an angle of 30° with it. Calculate (i) radius of the helical path, and (ii) time taken by the electron for one revolution. $\left(\mathrm{e} / \mathrm{m}=1.76 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}\right)$
(d) Two similar coils of wire having a radius of 7 cm and 60 turns have a common axis and are 18 cm apart. Calculate the magnetic field at a point midway between the coils on their common axis, when a current of 0.1 A is passed through them in the same direction.
(e) Define electric potential. Obtain an expression for the electrostatic potential energy of a system of n-point charges.
(f) A dielectric slab of thickness 0.01 m and dielectric constant 5 is placed between the plates of a parallel-plate capacitor. The area of each plate is $2 \times 10^{-1} \mathrm{~m}^{2}$ and they are 0.02 m apart. Calculate (i) capacitance of the capacitor, and (ii) by what distance the separation between the plates has to be increased to restore the capacitance to its original value (when there is no dielectric between plates).
3. Answer any one part :
(a) Use Gauss's law to derive the expression for the electric field due to a uniformly charged solid conducting sphere at a point lying (i) inside, and (ii) outside the sphere.
(b) State Biot - Savart's law. Use this law to derive an expression for the magnetic field at a point lying on the axis of a current- carrying circular coil.

Physical Constants:

$$
\begin{aligned}
& \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \\
& \mathrm{~m}_{\mathrm{e}}=9 \cdot 1 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{~m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1} \\
& \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1} \\
& \frac{1}{4 \pi \varepsilon_{0}}=9.0 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}
\end{aligned}
$$

विज्ञान स्नातक (बी.एस सी.)

सत्रांत परीक्षा

दिसम्बर, 2015

भौतिक विज्ञान

पी.एच.ई.-07: वैद्युत और चुंबकीय परिघटनाएँ

नोट: सभी प्रश्न अनिवार्य हैं । प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं। आप लॉग सारणियों अथवा कैल्कुलेटरों का उपयोग कर सकते हैं। प्रतीकों के अपने सामान्य अर्थ हैं । भौतिक नियतांकों के मान अंत में दिए गए हैं।

1. किन्हीं पाँच भागों के उत्तर दीजिए :
(क) विद्युत्-क्षेत्र, $\overrightarrow{\mathrm{E}}=6 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$ किसी स्थान के क्षेत्र में उपस्थित (कार्यरत) है । $\mathrm{x}-\mathrm{y}$ समतल में स्थित क्षेत्रफल $0.1 \mathrm{~m}^{2}$ वाली सतह से इस विद्युत्-क्षेत्र का विद्युत् अभिवाह परिकलित कीजिए।
(ख) सिद्ध कीजिए कि किसी संवृत पथ के अनुदिश विद्युत्-क्षेत्र द्वारा किए गए कार्य का मान शून्य होता है ।
(ग) सिद्ध कीजिए कि किसी समान्तर-प्लेट संधारित्र, जिसकी प्लेटों के बीच का माध्यम मुक्त आकाश है, के स्थिरवैद्युत क्षेत्र (E) में प्रति एकक आयतन संचित ऊर्जा का व्यंजक निम्नलिखित है :

$$
\mathrm{U}=\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2}
$$

(घ) लम्बाई l, अनुप्रस्थ-परिच्छेद का क्षेत्रफल A तथा n_{1} फेरों वाली एक लम्बी परिनालिका के मध्य, n_{2} फेरों वाली एक छोटी कुंडली इसके केन्द्र के चारों ओर लपेटी गई है । परिनालिका तथा कुंडली के बीच अन्योन्य प्रेरकत्व परिकलित कीजिए।
(ङ) एक बाह्य चुम्बकीय क्षेत्र में रखे किसी चुम्बकीय पदार्थ के चुम्बकन का मान $3300 \mathrm{Am}^{-1}$ तथा उसके अभिवाह घनत्व का मान 0.0044 T है । चुम्बकन क्षेत्र, H का मान परिकलित कीजिए।
(च) गाउस का चुम्बकत्व नियम बताइए । इस नियम के भौतिक अर्थ की चर्चा कीजिए।
(छ) तीन आवेश $-4 q, q$ तथा $2 q$, भुजा a वाले एक समबाहु त्रिभुज के तीन शीर्षों (कोनों) पर रखे हुए हैं । इस आवेश निकाय के स्थिरवैद्युत स्थितिज ऊर्जा का मान परिकलित कीजिए, जब $\mathrm{q}=2 \times 10^{-5} \mathrm{C}$ और $\mathrm{a}=10 \mathrm{~cm}$ है।
(ज) सिद्ध कीजिए कि स्वप्रेरकत्व L वाली एक कुंडली में धारा I स्थापित करने में लगने वाली ऊर्जा का मान $\frac{1}{2} \mathrm{LI}^{2}$ है ।
2. किन्हीं पाँच भागों के उत्तर दीजिए :
$5 \times 5=25$
(क) सम्बन्ध $\nabla \times \overrightarrow{\mathrm{E}}=-\frac{\overrightarrow{\partial \mathrm{B}}}{\partial \mathrm{t}}$ स्थापित कीजिए जहाँ प्रतीकों के अपने सामान्य अर्थ हैं ।
(ख) मैक्सवेल के विद्युत्-चुम्बकीय क्षेत्र समीकरणों के आधार पर एक समांग तथा समदैशिक परावैद्युत (डाइइलेक्ट्रिक) माध्यम में विद्युत्-क्षेत्र के लिए तरंग समीकरण प्राप्त कीजिए।
(ग) $2.0 \times 10^{-3} \mathrm{~T}$ परिमाण वाले चुम्बकीय क्षेत्र में वेग $3 \times 10^{7} \mathrm{~ms}^{-1}$ वाला एक इलेक्ट्रॉन 30° के कोण पर प्रवेश करता है । (i) कुंडलिनी पथ की त्रिज्या, तथा (ii) इलेक्ट्रॉन द्वारा एक परिक्रमा करने में लगा समय परिकलित कीजिए। ($\mathrm{e} / \mathrm{m}=1.76 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}$) $\quad 3+2$
(घ) तार की बनी दो एकसमान कुंडलियों को, जिनकी त्रिज्याएँ 7 cm हैं और प्रत्येक में फेरों की संख्या 60 है, एक उभयनिष्ठ अक्ष के अनुदिश एक-दूसरे से 18 cm दूरी पर रखा जाता है । जब इन कुंडलियों में, एक ही दिशा में, 0.1 A धारा प्रवाहित की जाती है, तो इन दोनों के बीच उभयनिष्ठ अक्ष पर मध्य में स्थित बिन्दु पर चुम्बकीय क्षेत्र का मान परिकलित कीजिए। 5
(ङ) विद्युत् विभव परिभाषित कीजिए। किसी n -बिन्दु आवेश निकाय के लिए स्थिरैद्युत स्थितिज ऊर्जा का व्यंजक प्राप्त कीजिए।
(च) मोटाई* 0.01 m तथा डाइइलेक्ट्रिक स्थिरांक 5 वाला एक डाइइलेक्ट्रिक स्लैब एक समांतर-प्लेट संधारित्र की प्लेटों के बीच रखा जाता है। प्रत्येक प्लेट का क्षेत्रफल $2 \times 10^{-1} \mathrm{~m}^{2}$ तथा उनके बीच की दूरी 0.02 m है । (i) संधारित्र की धारिता परिकलित कीजिए, तथा (ii) इस संधारित्र की धारिता का मान, इसके मूल मान (जब प्लेटों के बीच डाइइलेक्ट्रिक पदार्थ नहीं है) के बराबर करने के लिए प्लेटों के बीच की दूरी कितनी बढ़ानी पड़ेगी, ज्ञात कीजिए।
3. किसी एक भाग का उत्तर दीजिए : $1 \times 10=10$
(क) गाउस नियम का उपयोग कर किसी एकसमान आवेशित ठोस चालक गोले के कारण उसके (i) अन्दर स्थित किसी बिन्दु पर, तथा (ii) बाहर स्थित किसी बिन्दु पर विद्युत्-क्षेत्र का व्यंजक व्युत्पन्न कीजिए।
(ख) बायो-सावर्ट नियम बताइए । इस नियम का उपयोग कर किसी धारावाही वृत्ताकार कुंडली के अक्ष पर स्थित किसी बिन्दु पर चुम्बकीय क्षेत्र के लिए व्यंजक व्युत्पन्न कीजिए।
भौतिक नियतांक :

$$
\begin{aligned}
& \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \\
& \mathrm{~m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg} \\
& \dot{\mathrm{~m}}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} . \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1} \\
& \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1} \\
& \frac{1}{4 \pi \varepsilon_{0}}=9.0 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}
\end{aligned}
$$

