No. of Printed Pages: 8

MTE-13

BACHELOR'S DEGREE PROGRAMME (BDP)

01112

Term-End Examination
December, 2015

ELECTIVE COURSE: MATHEMATICS
MTE-13: DISCRETE MATHEMATICS

Time: 2 hours

Maximum Marks: 50

(Weightage: 70%)

Note: Question no. 1 is compulsory. Answer any four questions from questions no. 2 to 7. Use of calculators is **not** allowed.

- 1. Which of the following statements are true and which are false? Justify your answer. $5\times 2=10$
 - (a) $\sim (p \land q) \equiv \sim p \lor \sim q$
 - (b) There exists a simple graph with degree sequence 7, 7, 7, 5, 5, 3, 3.
 - (c) $a_n = a_{n/2} + n$, $a_1 = 0$, where n is a power of 2, is a linear recurrence relation.
 - (d) The partition 4+3+3+1 is self-conjugate.
 - (e) The graph $K_{4,5}$ is Eulerian.
- 2. (a) Express x^5 in terms of falling factorials and hence evaluate S_5^m for m = 0, 1, 2, 3, 4, 5.

(b) Prove that every tree is bipartite. Is the converse true? Justify.

3

2

3

5

2

- (c) How many five digit numbers are composed of only even digits?
- 3. (a) Form the truth tables of $(p \lor q) \land \sim r$ and $p \lor (q \land \sim r)$ to verify whether $(p \lor q) \land \sim r \equiv p \lor (q \land \sim r)$.
 - (b) Using mathematical induction, prove that $1+\frac{1}{4}+\frac{1}{9}+...+\frac{1}{n^2} \leq 2-\frac{1}{n} \ \forall \ n \in {\bf N}.$ 3
 - (c) Find the solution of the recurrence relation $a_n = 4 a_{n-1} + 5 a_{n-2}$, $a_0 = 0$, $a_1 = 6$.
- **4.** (a) Solve the following recurrence relation: $u_n = (n! \ n) \ u_{n-1}$ for $n \ge 1$ with $u_0 = 1$.
 - (b) Let \$\mathhb{D}\$ be a two element Boolean algebra with \$\lambda\$, \$\lambda\$ and ' operations defined in it. Prove that \$\mathhat{D} \times \mathhat{D}\$ is also a Boolean algebra stating clearly the operations defined in it.
 - (c) Determine if the following is a valid argument. Explain your conclusion.

Proposition: $\forall x \in \mathbf{R}, x^3 > x^2$

Proof:
$$\forall x \in \mathbf{R}, x^2 > 0$$

$$\Rightarrow x^2(x-1) > 0 (x-1)$$

$$\Rightarrow x^3 - x^2 > 0$$

$$\Rightarrow x^3 > x^2$$

- 5. (a) Find a recurrence relation for a_n, the number of ways to arrange cars in a row with n spaces if we can use Maruti 800 or Tata Safari or Scorpio. A Tata Safari or Scorpio requires two spaces, whereas a Maruti 800 requires just one space. Assume that you have unlimited number of each type of car and we do not distinguish between 2 cars of the same type.
 - (b) If $K_{m, n}$ for m, $n \ge 2$, is Hamiltonian, how are m and n related? Justify your answer.
 - (c) Show that if 7 colours are used to paint 50 bicycles and each cycle is coloured with a single colour, at least 8 bicycles will have the same colour.
- 6. (a) A box contains 6 red and 4 green balls. Four balls are selected from the box at random. What is the probability that two of the selected balls will be red and two will be green?
 - (b) Define vertex connectivity and cut vertex set of any graph G. Find the vertex connectivity and cut vertex set for the following graph:

3

P.T.O.

4

3

3

3

(c) How many numbers from 0 to 759 are not divisible by either 3 or 7?

3

5

2

3

7. (a) Solve the following recurrence relation: $a_n = 2a_{n-1} + 1$ if $n \ge 1$ and $a_0 = 0$, using generating function technique. Also find a_5 using your answer.

(b) Is there a 4-regular graph on 7 vertices? If 'yes', construct such a graph. If your answer is 'no', justify your answer.

(c) Find the Boolean expression in the DNF form for the function defined in tabular form below:

x	у	z	f(x, y, z)
1	0	1	1
0	1	0	0
0	0	1	1
1	1	1	1
1	0	0	0
0	1	1	1
1	1.	0	1
0	0	0	0

एम.टी.ई.-13

स्नातक उपाधि कार्यक्रम (बी.डी.पी.) सत्रांत परीक्षा दिसम्बर, 2015

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-13 : विविक्त गणित

समय : 2 घण्टे

अधिकतम अंक : 50

(कुल का : 70%)

नोट: प्रश्न सं. 1 करना अनिवार्य है । प्रश्न सं. 2 से 7 में से कोई चार प्रश्न कीजिए । कैल्कुलेटरों के प्रयोग करने की अनुमित नहीं है ।

- 1. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? अपने उत्तर की पुष्टि कीजिए । $5\times 2=10$
 - $(\overline{\Phi}) \sim (p \land q) \equiv \sim p \lor \sim q$
 - (ख) कोटि अनुक्रम 7, 7, 7, 5, 5, 3, 3 वाले सरल ग्राफ़ का अस्तित्व होता है।
 - (ग) $a_n = a_{n/2} + n$, $a_1 = 0$, जहाँ n, 2 की घात है, एक रैखिक पुनरावृत्ति सम्बन्ध है ।
 - (घ) विभाजन 4 + 3 + 3 + 1 स्वसंयुग्मी है।
 - (ङ) ग्राफ़ K_{4, 5} ऑयलरी है।
- 2. (क) x^5 को पतती क्रमगुणित के पदों में व्यक्त कीजिए और इस तरह $m=0,\ 1,\ 2,\ 3,\ 4,\ 5$ के लिए S_5^m का मूल्यांकन कीजिए।

	(ख)	सिद्ध कीजिए कि प्रत्येक वृक्ष द्विभाजित है । क्या यह	
		विलोम सत्य है ? पुष्टि कीजिए ।	3
	(ग)	पाँच अंक की कितनी संख्याएँ केवल सम अंकों से	
		बनती हैं ?	2
3.	(क)	$(p \lor q) \land \sim r \equiv p \lor (q \land \sim r) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
		इसको सत्यापित करने के लिए $(p \lor q) \land \sim r$ और	
		\mathbf{p} V (\mathbf{q} \wedge \sim \mathbf{r}) की सत्यमान सारणियाँ बनाइए ।	3
	(碅)	गणितीय आगमन द्वारा सिद्ध कीजिए कि	
		$1 + \frac{1}{4} + \frac{1}{9} + + \frac{1}{n^2} \le 2 - \frac{1}{n} \ \forall \ n \in \mathbb{N}.$	3
	(ग)	पुनरावृत्ति सम्बन्ध	
,		$a_n = 4 a_{n-1} + 5 a_{n-2}, a_0 = 0, a_1 = 6$	
	٠	का हल ज्ञात कीजिए।	4
4.	(क)	निम्नलिखित पुनरावृत्ति सम्बन्ध को हल कीजिए :	
		$\mathbf{u_0} = 1$ वाले $\mathbf{n} \ge 1$ के लिए $\mathbf{u_n} = (\mathbf{n}! \ \mathbf{n}) \ \mathbf{u_{n-1}}$	3
	(ख)	मान लीजिए 🏖 दो अवयव बूलीय बीजावली है जिसमें	
	` ,	संक्रियाएँ 🔥 v और / परिभाषित हैं । 🙊 🗴 🖫 पर	
		परिभाषित संक्रियाओं को स्पष्ट करते हुए सिद्ध कीजिए	
		कि ॐ ×ॐ भी एक बूलीय बीजावली है ।	5
	(ग)	निर्धारित कीजिए कि क्या निम्नलिखित तर्क मान्य है।	
		अपने निष्कर्ष को स्पष्ट कीजिए ।	2
		कथन : $\forall x \in \mathbf{R}, x^3 > x^2$	
		उपपत्ति : $\forall x \in \mathbf{R}, x^2 > 0$	

 $\Rightarrow x^3 - x^2 > 0$ $\Rightarrow x^3 > x^2.$

 $\Rightarrow x^2(x-1) > 0(x-1)$

- 5. (क) यदि हम मारुति 800 या टाटा सफारी या स्कोरिपयो का प्रयोग कर सकते हैं तब n स्थानों वाली पंक्ति में कारों को रखने की संख्या an के लिए पुनरावृत्ति सम्बन्ध ज्ञात कीजिए । एक टाटा सफारी या स्कोरिपयो को दो स्थानों की आवश्यकता होगी, जबिक मारुति 800 को केवल एक स्थान की ज़रूरत होगी । मान लीजिए कि आपके पास प्रत्येक कारों की संख्या असीमित है और प्रत्येक प्रकार की 2 कारों के बीच हम अन्तर नहीं करते हैं ।
 - (ख) यदि $m, n \ge 2$ के लिए $K_{m, n}$ हैमिल्टोनियन है, तब m और n किस प्रकार सम्बन्धित हैं ? अपने उत्तर की पृष्टि कीजिए।
 - (ग) दिखाइए कि यदि 50 साइकिलों को पेंट करने के लिए 7 रंगों का प्रयोग किया जाता है और प्रत्येक साइकिल को एक ही रंग से पेंट किया जाता है, तब कम-से-कम 8 साइकिलों का रंग एक जैसा होगा।
- 6. (क) एक बक्से में 6 लाल और 4 हरी गेंदें हैं । बक्से में से चार गेंदें यादृच्छया चुनी जाती हैं । चुनी गई गेंदों में से दो लाल और दो हरी होंगी, इसकी क्या प्रायिकता है ?
 - (ख) किसी भी ग्राफ़ G के शीर्ष सम्बद्धतांक और काट शीर्ष समुच्चय को परिभाषित कीजिए। निम्नलिखित ग्राफ़ का शीर्ष सम्बद्धतांक और काट शीर्ष समुच्चय ज्ञात कीजिए:

MTE-13

4

3

3

- (ग) 0 से 759 तक की कितनी संख्याएँ 3 या 7 से विभाजित नहीं होतीं ?
- 3
- 7. (क) जनक फलन तकनीक का प्रयोग करके निम्नलिखित पुनरावृत्ति सम्बन्ध को हल कीजिए : $a_n = 2a_{n-1} + 1 \ \text{यद} \ n \ge 1 \ \text{और} \ a_0 = 0. \ \text{अपने} \ 3 \pi \text{.}$ से a_5 भी ज्ञात कीजिए ।

5

(ख) क्या 7 शीर्षों पर 4-नियमित ग्राफ़ होता है ? यदि 'होता है' तो ऐसा ग्राफ़ बनाइए । यदि 'नहीं होता है' तो अपने उत्तर की पुष्टि कीजिए ।

2

(ग) नीचे सारणीबद्ध रूप में परिभाषित फलन के लिए DNF रूप में बुलीय व्यंजक ज्ञात कीजिए:

x	у	z	f(x, y, z)
1	0	1	1
0	1	0	0
0	0	1	1
1	1	1	. 1
1	0	0	0
0	1	1	1
1	1	0	1
0	0	0	0