MTE-05

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

December, 2015

ELECTIVE COURSE : MATHEMATICS

MTE-05 : ANALYTICAL GEOMETRY

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 70\%)
Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Use of calculators is not allowed.

1. (a) Let $\mathrm{y}^{2}=4 \mathrm{ax}$ be a parabola and P be a point on it. Let the normal at P intersect the x -axis at Q . Draw a line at Q perpendicular to the above normal. Show that this line intersects the parabola $\mathrm{y}^{2}+4 \mathrm{a}(\mathrm{x}-2 \mathrm{a})=0$.
(b) Show that the coplanar points $\mathrm{A}(2,3,2)$, $\mathrm{B}(4,7,6), \mathrm{C}(1,2,3), \mathrm{D}(-1,-2,-1)$ form a parallelogram.
2. (a) Show that the point $(0,3+\sqrt{5})$ lies on the ellipse with foci $(2,3)$ and $(-2,3)$ and semi-major axis 3.
(b) Show that the cone whose vertex is at the origin and which passes through the curve of intersection of the sphere $x^{2}+y^{2}+z^{2}=3 p^{2}$ and any plane which is at a distance ' p ' from the origin has mutually perpendicular generators.
3. (a) Find the equations of the spheres which pass through the circle
$x^{2}+y^{2}+z^{2}-6 x+z+6=0, x-y=0$ and touch the plane $\mathrm{z}=0$.
(b) Identify the conicoid $1+2 x^{2}+9 y^{2}=3 z^{2}$. Does the xy-plane intersect with it? Justify your answer.
4. (a) Find the new equation of straight line $2 \mathrm{x}+\mathrm{y}=5$ after rotating the axes through 45°.
(b) Show that the conicoid

$$
x^{2}+2 y^{2}+2 y z+2 x+4 y+8 z+1=0
$$

is central. Find the new equation of the conicoid if the origin is shifted to its centre.
5. State whether the following statements are true or false. Justify your answer with a short-explanation or a counter-example.
(a) The plane making intercept 1 at the z -axis and parallel to the xy-plane intersects the cone $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{z}^{2} \tan ^{2} \theta$ in a circle.
(b) There exists no line with $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{6}}$ as direction cosines.
(c) The curve $\mathrm{xy}^{2}+\mathrm{yx}^{2}=0$ is symmetric about the origin.
(d) The plane $3 \mathrm{x}+4 \mathrm{y}+2 \mathrm{z}=1$ touches the conicoid $3 x^{2}+2 y^{2}+z^{2}=1$.
(e) Non-degenerate conics are non-central.

स्नातक उपाधि कार्यक्रम

(बी.डी.पी.)
 सत्रांत परीक्षा

दिसम्बर, 2015

ऐच्छिक पाठ्यक्रम : गणित

 एम.टी.ई.-05 : वैश्लेषिक ज्यामितिसमय : $1 \frac{1}{2}$ घण्टे
अधिकतम अंक : 25
(कुल का : 70\%)
नोट : प्रश्न सं. 5 करना अनिवार्य है। प्रश्न सं. 1 से 4 में से किन्हीं तीन प्रश्नों के उत्तर दीजिए / कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है ।

1. (क) मान लीजिए $\mathrm{y}^{2}=4 \mathrm{ax}$ एक परवलय है और P इस पर एक बिन्दु है । मान लीजिए \mathbf{P} पर अभिलम्ब x -अक्ष को Q पर काटता है । Q पर उपर्युक्त अभिलम्ब के लम्बवत् रेखा खींचिए। दर्शाइए कि यह रेखा परवलय $\mathrm{y}^{2}+4 \mathrm{a}(\mathrm{x}-2 \mathrm{a})=0$ को काटती है।
(ख) दिखाइए कि समतलीय बिन्दु $\mathrm{A}(2,3,2), \mathrm{B}(4,7,6)$, $\mathrm{C}(1,2,3), \mathrm{D}(-1,-2,-1)$ एक समान्तर चतुर्भुज को निरूपित करते हैं ।
2. (क) दिखाइए कि बिन्दु $(0,3+\sqrt{5})$, नाभियों $(2,3)$ और $(-2,3)$ तथा अर्ध-दीर्घ अक्ष 3 वाले दीर्घवृत्त पर स्थित है।
(ख) दिखाइए कि शंकु जिसका शीर्ष मूल-बिन्दु पर है और जो गोले $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=3 \mathrm{p}^{2}$ तथा मूल-बिन्दु से ' p ' दूरी पर स्थित समतल के प्रतिच्छेद वक्र से होकर गुज़रता है, उसके परस्पर लम्ब जनक होते हैं ।
3. (क) वृत्त $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-6 \mathrm{x}+\mathrm{z}+6=0, \mathrm{x}-\mathrm{y}=0$ से गुज़रने वाले तथा समतल $z=0$ को स्पर्श करने वाले गोलों के समीकरण ज्ञात कीजिए ।
(ख) शांकवज $1+2 \mathrm{x}^{2}+9 \mathrm{y}^{2}=3 \mathrm{z}^{2}$ को पहचानिए। क्या xy -समतल इसे प्रतिच्छेदित करता है ? अपने उत्तर की पुष्टि कीजिए।
4. (क) अक्षों को 45° से घुमाने पर सरल रेखा $2 \mathrm{x}+\mathrm{y}=5$ का नया समीकरण ज्ञात कीजिए।
(ख) दिखाइए कि शांकवज
$x^{2}+2 y^{2}+2 y z+2 x+4 y+8 z+1=0$
केन्द्रीय है । यदि मूल-बिन्दु को इसके केन्द्र पर स्थानान्तरित कर दिया जाए तो इस शांकवज का नया समीकरण ज्ञात कीजिए।
5. बताइए कि निम्नलिखित कथन सत्य हैं अथवा असत्य । अपने उत्तरं की लघु-व्याख्या या प्रत्युदाहरण द्वारा पुष्टि कीजिए।
(क) z -अक्ष पर अंतःखण्ड 1 बनाने वाला तथा xy -तल के समान्तर समतल, शंकु $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{z}^{2} \tan ^{2} \theta$ को एक वृत्त में प्रतिच्छेदित करता है ।
(ख) ऐसी कोई रेखा नहीं होती जिसकी दिक्कोज्याएँ $\frac{1}{\sqrt{3}}$,

$$
\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{6}} \text { हों । }
$$

(ग) वक्र $\mathrm{xy}^{2}+\mathrm{yx}^{2}=0$ मूल-बिन्दु के सापेक्ष सममित है ।
(घ) समतल $3 \mathrm{x}+4 \mathrm{y}+2 \mathrm{z}=1$ शांकवज

$$
3 \mathrm{x}^{2}+2 \mathrm{y}^{2}+\mathrm{z}^{2}=1 \text { को स्पर्श करता है। }
$$

(ङ) अनपभ्रष्ट शांकव अकेन्द्रीय होते हैं ।

