BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

December, 2015

ELECTIVE COURSE : MATHEMATICS MTE-03 : MATHEMATICAL METHODS

Time : 2 hours
Maximum Marks : 50
(Weightage 70\%)

Note: Question no. 7 is compulsory. Attempt any four questions from questions no. 1 to 6 . Use of calculators is not allowed.

1. (a) (i) Given $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}, \mathrm{f}(\mathrm{x})=3 \mathrm{x}+1, \mathrm{x} \in \mathbf{R}$, show that f is bijective.
(ii) Given f: $\mathbf{R} \rightarrow \mathbf{R}, \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+2, \mathrm{x} \in \mathbf{R}$ and $\quad g: R \rightarrow \mathbf{R}, g(x)=3 x+5, x \in \mathbf{R}$.
Is $\mathrm{fog}=\mathrm{gof}$?
(b) Evaluate :

$$
\int_{1}^{2} \frac{d x}{x(1+2 x)^{2}}
$$

(c) The probability that a man will get the contract A is $\frac{2}{3}$ and the probability that he will not get the contract B is $\frac{5}{9}$. If the probability of getting at least one contract is $\frac{4}{5}$, what is the probability that he will get both the contracts?
2. (a) Determine the standard deviation of the random variable X whose values are given below :

X	32	28	47	63	71	39	10	60	96	14

(b) Show that the area A of a rectangle with a given perimeter S is maximum when it is a square.
(c) The sum of three numbers in A.P. is 18. If $2,4,11$ are added successively to the numbers then the resulting numbers are in
G.P. Find the numbers.
3. (a) For 5 observations of pairs (x, y) of variables x and y, the following results are obtained :
$\Sigma \mathrm{x}=15, \Sigma \mathrm{y}=25 ; \Sigma \mathrm{x}^{2}=55, \Sigma \mathrm{y}^{2}=135$, $\Sigma \mathrm{xy}=83$. Find the two lines of regression. Also estimate the values of x and y if $y=12$ and $x=8$.
(b) Find $\frac{d z}{d t}$ where $z=x^{2}+3 x y+5 y^{2}$ and $\mathrm{x}=\cos \mathrm{t}, \mathrm{y}=2 \sin \mathrm{t} . \quad 3$
(c) If the roots of the equation $\mathrm{x}^{2}-l \mathrm{x}+\mathrm{m}=0$ differ by 1 , then prove that $l^{2}=4 \mathrm{~m}+1$.
4. (a) In a Binomial distribution consisting of 5 independent trials, probabilities of 1 and 2 successes are 0.4096 and 0.2048 respectively. Find the probability of success. Also find the mean and variance of the distribution.
(b) Find the sine of the angle between the vectors $\alpha=2 \mathbf{i}-\mathbf{j}+\mathbf{k}$ and $\beta=3 \mathbf{i}+4 \mathbf{j}-\mathbf{k}$.
(c) Given $\frac{d y}{d x}=-\frac{y^{2}}{25}$ and $y=5$ when $x=0$.

Find x when $\mathrm{y}=2$.
5. (a) The number of accidents in a highway as recorded every month over a 9 -month period are $15,18,9,11,14,10,8,13,19$. Test at 5% level of significance whether these frequencies are in agreement with the belief that the number of accidents was the same during the 9 months. It is given that table values of χ^{2} at 5% level for 8 d.o.f. and 9 d.o.f. are 15.5 and 16.9 respectively.
(b) Find the equation of the sphere whose radius is 5 and centre is the point of intersection of the plane $x+y+2 z=2$ and the straight line $\frac{x-1}{1}=\frac{y+1}{2}=\frac{z-0}{-1}$.
(c) Find the equation of the normal to the curve $y(x-2)(x-3)-x+7=0$, at the point where it cuts the x-axis.
6. (a) Measurements of a sample of 6 weights were found to be $14 \cdot 3,16 \cdot 6,15 \cdot 7,14 \cdot 8,16 \cdot 2$ and 15.4 kilogram respectively. (i) Determine an unbiased estimate of the population mean. (ii) Compare the sample standard deviation with the estimated population standard deviation.
(b) Evaluate :

$$
\lim _{x \rightarrow 3} \frac{\sqrt{x-3}+\sqrt{x}-\sqrt{3}}{\sqrt{x^{2}-9}}
$$

(c) Find the equation of the straight line passing through the intersection of the lines $x+2 y=1 \quad$ and $2 x-3 y+2=0 \quad$ and perpendicular to the line $3 x+y+9=0$.
7. State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter-example.
(i) The best measure of central tendency for the data $2,4,6,8,10,98,100$ is its mean.
(ii) $|\mathbf{a} \times \mathbf{b}|$ is maximum when \mathbf{a} and \mathbf{b} are parallel.
(iii) $f(x)=\left\{\begin{array}{cc}0.02(10-x) ; & 0 \leq x \leq 10 \\ 0, & \text { otherwise }\end{array}\right.$
is a p.d.f. of a random variable X .
(iv) Function $f(x)=x+\frac{1}{x}$ is increasing for $0<\mathrm{x} \leq 1$.
(v) 5^{3} simple random samples of size 3 can be drawn without replacement from a population of size 5.

स्नातक उपाधि कार्यक्रम

(बी.डी.पी.)

सत्रांत परीक्षा

दिसम्बर, 2015

ऐच्छिक पाठ्यक्रम : गणित
 एम.टी.ई.-03 : गणितीय विधियाँ

समय : 2 घण्टे
अधिकतम अंक : 50
(कुल का 70\%)
नोट : प्रश्न सं. 7 अनिवार्य है। प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए। कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है।

1. (क) (i) यदि फलन $f: \mathbf{R} \rightarrow \mathbf{R}, \mathrm{f}(\mathrm{x})=3 \mathrm{x}+1, \mathrm{x} \in \mathbf{R}$ द्वारा परिभाषित हो, तो दिखाइए कि f एकैकी आच्छादी है ।
(ii) यदि $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}, \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+2, \mathrm{x} \in \mathbf{R}$ तथा $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}, \mathrm{g}(\mathrm{x})=3 \mathrm{x}+5, \mathrm{x} \in \mathbf{R}$ द्वारा परिभाषित हों, तो क्या $\mathrm{fog}=\mathrm{gof}$?
(ख) मूल्यांकन कीजिए :

$$
\int_{1}^{2} \frac{d x}{x(1+2 x)^{2}}
$$

(ग) एक व्यक्ति को ठेका A प्राप्त होने की प्रायिकता $\frac{2}{3}$ है और उसको ठेका B न प्राप्त होने की प्रायिकता $\frac{5}{9}$ है । यदि उसके कम-से-कम एक ठेका प्राप्त करने की प्रायिकता $\frac{4}{5}$ है, तो उसको दोनों ठेके प्राप्त होने की प्रायिकता क्या होगी ?
2. (क) यादृच्छिक चर X, जिसके मान नीचे दिए गए हैं, का मानक विचलन ज्ञात कीजिए :

X	32	28	47	63	71	39	10	60	96	14

(ख) दिखाइए कि दी गई परिधि S के लिए एक आयत का क्षेत्रफल A तब अधिकतम होता है जबकि वह एक वर्ग हो।
(ग) तीन संख्याएँ, जो कि समांतर श्रेणी में हैं, का योगफल 18 है । यदि इन तीन संख्याओं में क्रमश: $2,4,11$ जोड़े जाएँ तो इनसे एक गुणोत्तर श्रेणी प्राप्त होती है । संख्याएँ ज्ञात कीजिए।
3. (क) चरों x और y के युग्मों (x, y) के 5 प्रेक्षणों के लिए निम्नलिखित परिणाम प्राप्त हैं :
$\Sigma \mathrm{x}=15, \Sigma \mathrm{y}=25, \Sigma \mathrm{x}^{2}=55, \Sigma \mathrm{y}^{2}=135$, $\Sigma \mathrm{xy}=83$. दोनों समाश्रयण रेखाएँ ज्ञात कीजिए। यदि $\mathrm{y}=12$ और $\mathrm{x}=8$ हो, तो x और y के मान भी आकलित कीजिए।
(ख) यदि $\mathrm{z}=\mathrm{x}^{2}+3 \mathrm{xy}+5 \mathrm{y}^{2}$ और $\mathrm{x}=\cos \mathrm{t}$, $\mathrm{y}=2 \sin \mathrm{t}$ हो, तो $\frac{\mathrm{dz}}{\mathrm{dt}}$ ज्ञात कीजिए ।
(ग) यदि समीकरण $\mathrm{x}^{2}-l \mathrm{x}+\mathrm{m}=0$ के मूलों में 1 का अंतर है, तो सिद्ध कीजिए कि $l^{2}=4 \mathrm{~m}+1$.
4. (क) 5 स्वतंत्र अभिप्रयोगों वाले द्विपद बंटंन में 1 और 2 सफलताएँ प्राप्त करने की प्रायिकताएँ क्रमश: 0.4096 और 0.2048 हैं । सफलता प्राप्त करने की प्रायिकता ज्ञात कीजिए। बंटन का माध्य और प्रसरण भी ज्ञात कीजिए।
(ख) सदिशों $\alpha=2 \mathbf{i}-\mathbf{j}+\mathbf{k}$ और $\beta=3 \mathbf{i}+4 \mathbf{j}-\mathbf{k}$ के बीच के कोण की ज्या (साइन) ज्ञात कीजिए।
(ग) यदि $\frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{\mathrm{y}^{2}}{25}$ और $\mathrm{x}=0$ पर $\mathrm{y}=5$ प्राप्त हो, तो x ज्ञात कीजिए जबकि $\mathrm{y}=2$ है ।
5. (क) 9 महीनों के अंतराल में प्रत्येक महीने किसी राजमार्ग पर होने वाली दुर्घटनाओं की संख्या $15,18,9,11,14$, $10,8,13,19$ अंकित की गईं । 5% सार्थकता स्तर पर जाँच कीजिए कि क्या ये बारम्बारताएँ इस धारणा से कि इन 9 महीनों में होने वाली दुर्घटनाओं की संख्या समान थी, सहमति रखती हैं । 5% सार्थकता स्तर पर 8 और 9 स्वातंत्य्य-कोटि के लिए χ^{2} के सारणी मान क्रमश: 15.5 और 16.9 दिए गए हैं ।
(ख) उस गोले का समीकरण ज्ञात कीजिए जिसकी त्रिज्या 5 है और जिसका केन्द्र समतल $\mathrm{x}+\mathrm{y}+2 \mathrm{z}=2$ और सरल रेखा $\frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}+1}{2}=\frac{\mathrm{z}-0}{-1}$ का प्रतिच्छेद बिन्दु है।
(ग) वंक्र $\mathrm{y}(\mathrm{x}-2)(\mathrm{x}-3)-\mathrm{x}+7=0$ जिस बिन्दु पर x-अक्ष को काटता है, उस बिन्दु पर वक्र के अभिलम्ब का समीकरण ज्ञात कीजिए।
6. (क) प्रतिदर्श के रूप में लिए गए 6 भार क्रमश: $14.3,16.6$, $15.7,14.8,16.2$ और 15.4 किलोग्राम हैं । (i) समष्टि माध्य का अनभिनत आकल ज्ञात कीजिए। (ii) आकलित समष्टि मानक विचलन से प्रतिदर्श मानक विचलन की तुलना कीजिए।
(ख) मूल्यांकन कीजिए :

$$
\lim _{x \rightarrow 3} \frac{\sqrt{x-3}+\sqrt{x}-\sqrt{3}}{\sqrt{x^{2}-9}}
$$

(ग) रेखाओं $\mathrm{x}+2 \mathrm{y}=1$ और $2 \mathrm{x}-3 \mathrm{y}+2=0$ के प्रतिच्छेद बिन्दु से होकर जाने वाली उस सरल रेखा का समीकरण ज्ञात कीजिए जो रेखा $3 \mathrm{x}+\mathrm{y}+9=0$ पर लंब है ।
7. बताइए कि निम्नलिखित कथन सत्य हैं या असत्य । संक्षिप्त उपपत्ति अथवा प्रत्युदाहरण की सहायता से अपने उत्तर की पुष्टि कीजिए। $5 \times 2=10$
(i) आँकड़ों $2,4,6,8,10,98,100$ के लिए केन्द्रीय प्रवृत्ति का सबसे अच्छा माप माध्य है ।
(ii) $|\mathbf{a} \times \mathbf{b}|$ अधिकतम होता है जब \mathbf{a} और \mathbf{b} समान्तर होते हैं ।
(iii) $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}0.02(10-\mathrm{x}) ; & 0 \leq \mathrm{x} \leq 10 \\ 0, & \text { अन्यथा }\end{array}\right.$

यादृच्छिक चर X का p.d.f है ।
(iv) $0<\mathrm{x} \leq 1$ के लिए फलन $\mathrm{f}(\mathrm{x})=\mathrm{x}+\frac{1}{\mathrm{x}}$ वर्धमान है ।
(v) आमाप 5 वाली समष्टि से प्रतिस्थापन किए बिना आमाप 3 वाले 5^{3} सरल यादृच्छिक प्रतिदर्श प्राप्त किए जा सकते हैं।

