00551

No. of Printed Pages: 4

B.Tech. – VIEP – MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

December, 2015

BIME-034 : HEAT AND MASS TRANSFER

Time : 3 hours

Maximum Marks : 70

- **Note :** Attempt any **five** questions. Assume suitable missing data, if any. Use of scientific calculator is permitted.
- 1. (a) Explain the mechanism of thermal conduction in solids with the help of a suitable example.
 - (b) Derive an expression for heat flow through the composite cylinders, using a sectional diagram.
- (a) What is unsteady state heating or cooling ? Explain about Newtonian heating or cooling.

BIME-034

P.T.O.

7

7

7

BIME-034

1

(b) A copper plate 2 mm thick is heated upto 400°C and then quenched into water at 20°C. Find the time required for the plate to reach the temperature of 40°C. (Assume h = heat transfer coefficient = 80 kcal/m² hr°C, Plate dimensions = 30 cm × 30 cm, C_p = 0.091 kcal/kg-°C, $\rho = 8800 \text{ kg/m}^2$).

7

7

7

7

- (a) Derive the expression for heat transfer coefficient, when temperature distribution is known.
 - (b) Air flows over a thin plate with a velocity of 2.5 m/s. The plate is 100 cm × 100 cm. Estimate the boundary layer thickness at the traiting edge of the plate and the force necessary to hold the plate.

(Take
$$\mu$$
 = 0.86 \times 10 $^{-5}$ Ns/m 2 and
$$\rho$$
 = 1.12 kg/m $^3)$

4. (a) With reference to radiation, explain about the special properties of the shape factor.

2

(b) Find the shape factor for the given configuration and heat exchange between 1 and 2, if $T_1 = 400^{\circ}$ C, $T_2 = 200^{\circ}$ C, $\varepsilon_1 = 0.8$ and $\varepsilon_2 = 0.9$.

- 5. (a) Explain briefly the different types of heat exchangers.
 - (b) What is fouling of heat exchangers ? Brief about fouling processes and factors affecting them.
- 6. (a) Briefly write about Boiling Heat Transfer and Nature of Vaporization Phenomena.

BIME-034

P.T.O.

7

7

7

7

(b) Steam at 0.65 bar condenses on a vertical plate 0.6 m square. If the surface temperature of the plate is maintained at 15°C, estimate the rate of condensation.

[Take $T_s = 37.7^{\circ}C$,

 h_{fg} (at 0.065 bar) = 2412 × 10³ J/kg.

The properties of water at mean temperature of $26 \cdot 4^{\circ}C = \left(\frac{37 \cdot 7 + 15}{2}\right)$ are given below :

$$ho$$
 = 1000 kg/m³, μ = 864 × 10⁻⁶ kg/ms,
k = 0.913 W/mK]

7. Write short notes on the following :

 $4 \times 3\frac{1}{2} = 14$

7

- (a) Solar Radiation
- (b) Heisler Charts
- (c) Logarithmic Mean Temperature Difference (LMTD)
- (d) Transient Heat Conduction

BIME-034