

No. of Printed Pages: 4

BIME-021

DIPLOMA – VIEP – MECHANICAL ENGINEERING (DMEVI)

Term-End Examination December, 2015

BIME-021: MECHANICS OF MATERIALS

Time: 2 hours Maximum Marks: 70

Note: Attempt any five questions. Question no. 1 is compulsory. Attempt any four questions from questions no. 2 to 7. All questions carry equal marks.

- 1. Choose correct answer from the given choices for the following questions: $7\times2=14$
 - (a) Poisson's ratio is defined as
 - (i) Lateral strain / Linear strain
 - (ii) Lateral strain × Linear strain
 - (iii) Linear strain / Lateral strain
 - (iv) Lateral strain Linear strain
 - (b) The angle between principal planes is
 - (i) 90°
 - (ii) 180°
 - (iii) 60°
 - (iv) 45°

- (c) Rankine's formula for long column considers
 - (i) only crippling load
 - (ii) only direct compressive load
 - (iii) Both crippling and compressive loads
 - (iv) None of the above
- (d) Failure of the components due to cyclic loading is known as
 - (i) Impact failure
 - (ii) Creep failure
 - (iii) Fatigue failure
 - (iv) Torsional failure
- (e) A cylinder is known as a thick cylinder, if the ratio of mean diameter to thickness is
 - (i) Less than 20
 - (ii) Less than 30
 - (iii) Equal to 45
 - (iv) Greater than 100
- (f) The maximum strain energy stored in the body per unit volume is known as
 - (i) Strain energy
 - (ii) Proof load
 - (iii) Proof resilience
 - (iv) Modulus of resilience

(g)	Formula for deflection at the mid-span of a				
	simply supported beam carrying a poin	it			
	load at the centre is given by				

- (i) $\frac{Wl^3}{48 EI}$
- (ii) $\frac{Wl^3}{16 EI}$
- (iii) $\frac{Wl^3}{96 EI}$
- (iv) $\frac{Wl^3}{100 EI}$
- 2. (a) Explain the stress strain diagram for the ductile material with a suitable sketch.
 - (b) Write a brief note on maximum shear stress theory and distortion energy theory.
- 3. (a) Normal stresses at a point measured along two axes on a specimen are 80 MPa tension and 50 MPa compression. It is accompanied by a shear stress of 30 MPa. Determine the maximum direct stress and shear stress on the material.
 - (b) A square of 8 cm × 8 cm cross-section is 6 m long. It is subjected to a tensile load of 250 kN. If E = 210 GPa and Poisson's ratio = 0.25, determine the change in volume and Bulk modulus.

7

4.	(a)	A beam of I-section 50 cm deep and 19 cm wide, has flanges 2.5 cm thick and web	
	*	1.5 cm thick. It carries a shearing force of	
		400 kN at a section. Calculate the	
		maximum intensity of shear stress in the	
		section if the moment of inertia is	7
		64,500 cm ⁴ .	7
	(b)	Derive the relation between Young's modulus and modulus of rigidity.	7
5.	(a)	A cantilever beam is subjected to a UDL	
		throughout the span. Derive the equation	
		for maximum slope and deflection by area	
		moment method.	7
	(b)	Prove that a hollow shaft of the same	
	(,	weight and material as that of a solid shaft	
		can resist more torque.	7
6.	(a)	Explain Euler's theory of Buckling of	
		columns.	7
	(b)	A cylinder of 15 cm internal diameter and	
		20 cm external diameter is subjected to a	
		liquid pressure from inside. There is also a	
		compressive load of 200 kN applied at the	
		ends of the cylinder. Find the greatest	
		pressure of the liquid so that the maximum	
		stresses in the material may not exceed	
		42 MPa.	7
7.	(a)	Explain the failure of the material due to	_
		fatigue and creep.	7
	(b)	Derive the equation for strain energy due	
		to impact loading.	7

4

BIME-021

1,000