00691

No. of Printed Pages : 5

BME-052

DIPLOMA IN MECHANICAL ENGINEERING (DME) / ADVANCED LEVEL CERTIFICATE COURSE IN MECHANICAL ENGINEERING (DMEVI / ACMEVI)

Term-End Examination

December, 2015

BME-052 : BASICS OF THERMAL ENGINEERING

Time : 2 hours

Maximum Marks : 70

- **Note :** Attempt **all** questions. Internal choices are given. All questions carry equal marks. Use of scientific calculator and steam tables is permitted.
- 1. Choose the correct alternative for the following objective type questions : 7×2=14
 - (a) Which of the following is the basis of temperature measurement?
 - (i) Zeroth law of thermodynamics
 - (ii) First law of thermodynamics
 - (iii) Second law of thermodynamics
 - (iv) Law of stable equilibrium

BME-052

P.T.O.

- (b) The Kelvin temperature of a system can be measured by a
 - (i) mercury-in-glass thermometer
 - (ii) thermocouple
 - (iii) constant-volume gas thermometer
 - (iv) resistance thermometer
- (c) Heat transferred to a closed stationary system at constant volume is equal to
 - (i) work transfer
 - (ii) increase in internal energy
 - (iii) increase in enthalpy
 - (iv) None of the above
- (d) Which of the following does *not* change during a throttling process ?
 - (i) Enthalpy
 - (ii) Entropy
 - (iii) Volume
 - (iv) Pressure

BME-052

(e) Match List 1 with List 2 and choose the correct answer from the code :

	List.	1	List 2	
ther	(Law modyr	of namics)		(Defines)
(A)	First		Ι.	Internal energy
(B)	Second		II.	Temperature
(C)	Zeroth		III.	Entropy
	Α	В	С	
(i)	Ι	II	III	
(ii)	II	III	Ι	
(iii)	III	I	II	
(iv)	Ι	III	п	

(f) If the thermal efficiency of a Carnot engine is 1/5, the COP of a Carnot refrigerator is

- (i) 5
- (ii) **4**
- (iii) 6
- (iv) 3

(g) The entropy of a system

- (i) can never decrease
- (ii) can never increase
- (iii) may increase or decrease
- (iv) will always remain constant

BME-052

- **2.** Answer any *two* of the following questions : $2 \times 7 = 14$
 - (a) In a cyclic process, heat transfers are + 14.7 kJ, - 25.2 kJ, - 3.56 kJ and + 31.5 kJ.
 What is the net work for this cyclic process ?
 - (b) A mass of gas is compressed from 80 kPa,
 0.1 m³ to 0.4 MPa, 0.03 m³. Assuming that
 the pressure and volume are related by

 $pv^n = constant,$

find the work done by the gas system.

- (c) A stationary mass of gas is compressed without friction from an initial state of 0.3 m³ and 0.105 MPa to a final state of 0.15 m³ and 0.105 MPa, the pressure remaining constant during the process. There is a transfer of 37.6 kJ of heat from the gas during the process. How much does the internal energy of the gas change?
- **3.** Answer any *two* of the following questions : $2 \times 7 = 14$
 - (a) Explain Clausius' statement of the second law of thermodynamics.
 - (b) Define Entropy. What are the causes of entropy increase?

BME-052

(c) Steam initially at 1.5 MPa, 300°C expands reversibly and adiabatically in a steam turbine to 40°C. Determine the ideal work output of the turbine per kg of steam.

4. Answer any *two* of the following questions : $2 \times 7 = 14$

- (a) Show that the COP of a heat pump is greater than the COP of a refrigerator by unity.
- (b) A rigid vessel of volume 0.86 m³ contains
 1 kg of steam at a pressure of 2 bar. Evaluate the specific volume, temperature, dryness fraction, internal energy and enthalpy of steam.
- (c) What is the effect of regeneration on the specific output and cycle efficiency of a steam power plant?
- 5. Write short notes on any *four* of the following: $4 \times 3\frac{1}{2} = 14$
 - (a) Nozzles
 - (b) Impulse Turbine
 - (c) Cooling Towers
 - (d) Black Body
 - (e) Stefan-Boltzmann Law
 - (f) Geothermal Energy

BME-052