

No. of Printed Pages: 3

BIEEE-017

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

December, 2015

BIEEE-017: ADVANCED CONTROL SYSTEM

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **seven** questions. Each question carries equal marks. Use of scientific calculator is allowed.

State and explain Lyapunov stability theorem.
 Investigate the system described by

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

for stability.

10

Using Routh's criteria check the stability of a system whose characteristic equation is given by

$$s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0.$$

1

10

- 3. Explain Jury stability criterion in detail for discrete systems.
 - 10
- 4. (a) What do you mean by by Fuzzy logic?

 Explain it with an example.

5

(b) What is the significance of membership functions in fuzzy logic?

5

5. A system is characterized by transfer function

$$\frac{Y(s)}{U(s)} = \frac{2}{s^3 + 6s^2 + 11s + 6}.$$

Find the state and output equation in matrix form and also test the controllability and observability of the systems.

10

6. Obtain the state transition matrix in the form e^{At} and determine the time response for the system,

$$X = Ax$$
, where $A = \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix}$

and $x_1(0) = 1$, $x_2(0) = 10$.

7. Write down the general form of "Steady state Ricatti Equation". How are these equations important? How do we solve these equations?

10

- 8. Determine the Z transform and ROC of the signal $x(n)=[3(2^n)-4(3^n)]\ u(n),$ where x(n) is a discrete time signal.
- 9. Explain the methods for generating Lyapunov's function for discrete systems in detail.
- 10. Write short notes on any two of the following: $2\times 5=10$
 - (a) Popov's Criterion
 - (b) Self Tuning Regulators
 - (c) Sample and Hold Circuit

1,000