

No. of Printed Pages: 2

Time: 3 hours

BIEEE-003

BIEEE-003

Maximum Marks: 70

P.T.O.

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination December, 2015

BIEEE-003: SPECIAL ELECTRICAL MACHINES

Note: Answer any five questions. Each question carries equal marks. Use of scientific calculator is allowed.			
1.	(a)	Explain the method of speed control by emf injection in rotor circuit of a slip ring induction motor.	10
	(b)	What do you mean by constant torque drive?	4
2.	(a)	Explain the operation of a permanent magnet stepper motor. Write its advantages.	.7
	(b)	Discuss the unipolar drive circuit for a variable reluctance stepper motor. Give its applications.	7
3.	(a)	Explain the construction and working of a three-phase 6/4 switched reluctance motor.	7
	(b)	Explain the phenomenon of torque production in a switched reluctance motor.	7

1

4.	(a)	Explain the magnetization and demagnetization effect of permanent magnets.	
	(b)	Why is a single-phase induction motor not inherently self-starting? Explain.	
5.	(a)	Why can a universal motor be operated on AC as well as DC supply? Give the advantages and applications of a universal motor.	
	(b)	Discuss the constructional features of a linear induction motor. How is a linear force developed?	
6.	(a)	Why is speed reversal not possible in shaded pole induction motors? Explain.	
	(b)	Explain the operating principle of a permanent magnet AC motor, with the help of a neat sketch.	
7.	Write short notes on any two of the following: $2\times 7=14$		
	(a)	PCB Motors	
	(b)	Permanent Magnet Generators	
	(c)	Hysteresis Motor	