No. of Printed Pages: 4

BIEE-033

DIPLOMA IN ELECTRICAL ENGINEERING (DELVI)

Term-End Examination December, 2015

BIEE-033: ELECTRICAL CIRCUIT THEORY

Time: 2 hours Maximum Marks: 70

Note: Attempt any five questions. Question no. 1 is compulsory. All questions carry equal marks. Use of scientific calculator is allowed. Assume missing data, if any.

1. Select the correct alternative.

 $7 \times 2 = 14$

- (a) Kirchhoff's law is applicable to
 - (i) AC circuits only
 - (ii) DC circuits only
 - (iii) AC as well as DC circuits
 - (iv) Passive networks only
- (b) Power factor of pure inductor is
 - (i) unity
 - (ii) zero
 - (iii) infinite
 - (iv) 0.707 lagging

(c)	A close path made by several branches of the network is known as
	(i) circuit
	(ii) branch
	(iii) junction
	(iv) loop
(d)	Power factor of a series resonating circuit
• •	is
	(i) unity
	(ii) zero
	(iii) 0.707 lagging
	(iv) 0.707 leading
(e)	As per maximum power transfer theorem, the internal resistance of a circuit should be equal to for maximum power transfer to load.
	(i) cell resistance
	(ii) load resistance
	(iii) load inductance
	(iv) load capacitance
(f)	In a circuit, the current is $10/-30^{\circ}$ amp. Nature of the current is
	(i) leading
	(ii) lagging
	(iii) in phase with voltage
	(iv) All of the above
(g)	Resistance of a 100 watt 200 volt lamp is
	(i) 100 Ω
	(ii) 200 Ω
	(iii) 400 Ω
	(iv) 1600 Ω

- **2.** (a) State and explain Kirchhoff's voltage law with the help of an example.
 - (b) Find out the current (I) through the 0.1Ω resistor, using Thevenin's theorem.

7

7

7

- **3.** (a) State and explain nodal analysis with the help of a suitable example.
 - (b) State, prove and explain maximum power transfer theorem.
- **4.** (a) State the condition of series resonance.

 Also define and derive the Quality factor of a series resonant circuit. 2+5
 - (b) A coil of resistance 100 Ω and inductance 100 mH is connected in series with a 100 pF capacitor. The circuit is connected to a 10 volt variable frequency source. Calculate (i) the resonant frequency, (ii) the current at resonance, and (iii) Q-factor of the circuit.

- 5. (a) Explain power triangle and impedance triangle. Also give the formula and units of real, imaginary and apparent power in case of an a.c. circuit.
 - (b) A resistance of 20 Ω is in series with an inductance of 0·1 henry with the terminal voltage of 230 volt 50 Hz. Find the value of current. Also calculate the phase angle between voltage and current.
- **6.** (a) State and explain Superposition theorem with the help of suitable diagrams.
 - (b) Using Norton's theorem, determine the current in the 10 Ω resistor of the given network.

- **7.** Write short notes on any *two* of the following : $2\times7=14$
 - (a) Delta Star Transformation
 - (b) Nodal Analysis
 - (c) Parallel Resonance
 - (d) Duality and Dual Networks

7

7