No. of Printed Pages: 4

BIEE-029

DIPLOMA IN ELECTRICAL ENGINEERING (DELVI) / ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRICAL ENGINEERING (ACELVI)

Term-End Examination December, 2015

BIEE-029 : POWER GENERATION SYSTEM					
Tin	ne : :	2 hours Maximum Marks : 70			
que		uestion no. 1 is compulsory . Attempt any four estions from Q. no. 2 to 8. All questions carry ual marks.			
1.	(a)	Power plant using coal works closely on which of the following cycles? $7\times2=14$ (i) Otto cycle (ii) Binary vapour cycle (iii) Brayton cycle			
	(b)	(iv) Rankine cycle Which power plant normally operates at high speeds?			
	(c)	Electrostatic precipitator is installed between and			

(d)	The voltage of a single solar cell is
	(i) 0·5 V
	(ii) 1 V
	(iii) 1·1 V
	(iv) 2·1 V
(e)	The total power of a wind stream is proportional to
	(i) Velocity of stream
	(ii) (Velocity of stream) ²
	(iii) (Velocity of stream) ³
	(iv) $\frac{1}{\text{Velocity of stream}}$
(f)	What is Diversity factor?
(g)	Which of the following power plants can
	generate power at unpredictable or
	uncontrollable times?
	(i) Wind power plants
	(ii) Tidal power plants
	(iii) Solar power plants
	(iv) Any of the above

2.	(a)	Draw a neat labelled sketch of a water tube boiler and also state its two advantages over a fire tube boiler.	7
	(b)	State why nuclear power plants are used as base load plants and diesel power plants as peak load plants.	7
3.	(a)	Draw a neat labelled diagram of nuclear reactor used in nuclear power station.	7
	(b)	State the effect of water hammering in penstock in hydroelectric power station and the methods to reduce it.	7
4.	(a)	State the functions of fuel system and exhaust system of a diesel power station.	7
	(b)	Define state grid and national grid.	7
5.	(a)	State the advantages of interconnection of power stations.	7
	(b)	State the reasons for low overall efficiency of a thermal power station. Also state the methods to improve it.	7
6.	(a)	Which water turbine should be selected for a water head of 300 m? Draw its labelled sketch.	7
	(b)	Describe the working principle of solar water heaters with a neat diagram.	7

7.	(a)	Explain the method of power generation by using gassifiers.	7
	(b)	Explain the open and closed cycles of ocean thermal electric conversion.	7
8.	(a)	Write short notes on the present scenario and future prospects of non-conventional sources of energy.	7
	(b)	Explain the working of MHD power generation with a neat sketch.	7