00498

No. of Printed Pages: 2

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

December, 2015

BIELE-009 : QUANTUM COMMUNICATION

Time : 3 hours

Maximum Marks: 70

BIELE-009

- Note: Attempt any seven questions. All questions carry equal marks. Missing data, if any, may be suitably assumed. Use of calculator is permitted.
- 1. With reference to the basics of quantum mechanics, differentiate between the following :

 $2 \times 5 = 10$

- (a) Pure and Mixed states
- (b) Observability and Commutivity
- 2. Explain the significance of Kraus representation theorem for open system quantum evolution. 10
- 3. What are the steps involved in the transmission of classical information over quantum channels? Explain.
- 4. In context to Quantum information theory, explain Von Neumann Entropy with suitable mathematical expressions. 10

BIELE-009

P.T.O.

10

1.

5.	Distinguish between Entanglement and Quantum channel capacity. How can they be used for quantum state compression ?	10
6.	What are the steps involved in the construction of stabilizer code ? Support your answer with suitable mathematical example.	10
7.	Establish the mathematical relationship between mixed state compression and Holevo's theorem. State the assumptions made during establishing the relationship.	10
8.	Distinguish between open system measurement and positive operator valued measurement technique in quantum mechanics.	10
9.	Explain the significance of the Heisenberg uncertainty principle in quantum mechanics.	10
10.	Write short notes on any <i>two</i> of the following : 2×5 =	=10
	(a) Channel Capacity	
	(b) Calderbank-Shor-Steane (CSS) Code	
	(a) Kraus Channel Ronresontation	

(c) Kraus Channel Representation

1,000